Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4962009
1.
B. Lüssem, A. Günther, A. Fischer, D. Kasemann, and K. Leo, J. Phys.: Condens. Matter 27, 443003 (2015).
http://dx.doi.org/10.1088/0953-8984/27/44/443003
2.
A. Fischer, P. Siebeneicher, H. Kleemann, K. Leo, and B. Lüssem, J. Appl. Phys. 111, 044507 (2012).
http://dx.doi.org/10.1063/1.3686744
3.
F. Kaschura, A. Fischer, D. Kasemann, K. Leo, and B. Lüssem, Appl. Phys. Lett. 107, 033301 (2015).
http://dx.doi.org/10.1063/1.4927478
4.
Y. Yang and A. J. Heeger, Nature 372, 344 (1994).
http://dx.doi.org/10.1038/372344a0
5.
J. McElvain, M. Keshavarz, H. Wang, F. Wudl, and A. J. Heeger, J. Appl. Phys. 81, 6468 (1997).
http://dx.doi.org/10.1063/1.364430
6.
K. Zhao, J. Deng, X. Wu, X. Cheng, J. Wei, and S. Yin, Org. Electron. 12, 1003 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.03.028
7.
Y.-C. Chao, H.-F. Meng, and S.-F. Horng, Appl. Phys. Lett. 88, 223510 (2006).
http://dx.doi.org/10.1063/1.2207838
8.
M. P. Klinger, A. Fischer, F. Kaschura, R. Scholz, B. Lüssem, B. Kheradmand-Boroujeni, F. Ellinger, D. Kasemann, and K. Leo, Adv. Mater. 27, 7734 (2015).
http://dx.doi.org/10.1002/adma.201502788
9.
J. Huang, M. Yi, D. Ma, and I. A. Hümmelgen, Appl. Phys. Lett. 92, 232111 (2008).
http://dx.doi.org/10.1063/1.2944880
10.
K.-I. Nakayama, S.-Y. Fujimoto, and M. Yokoyama, Appl. Phys. Lett. 88, 153512 (2006).
http://dx.doi.org/10.1063/1.2195947
11.
K. Nakayama, R. Akiba, and J. Kido, Appl. Phys. Express 5, 094202 (2012).
http://dx.doi.org/10.1143/APEX.5.094202
12.
K.-Y. Wu, Y.-T. Tao, C.-C. Ho, W.-L. Lee, and T.-P. Perng, Appl. Phys. Lett. 99, 093306 (2011).
http://dx.doi.org/10.1063/1.3632045
13.
A. Fischer, R. Scholz, K. Leo, and B. Lüssem, Appl. Phys. Lett. 101, 213303 (2012).
http://dx.doi.org/10.1063/1.4767391
14.
H. Yu, J. H. Kim, W. Chen, D. Kim, J. Guo, and F. So, Adv. Funct. Mater. 24, 6056 (2014).
http://dx.doi.org/10.1002/adfm.201400634
15.
C. O. Bozler and G. Alley, IEEE Trans. Electron Devices 27, 1128 (1980).
http://dx.doi.org/10.1109/T-ED.1980.19996
16.
W. Chen, F. So, and J. Guo, J. Appl. Phys. 116, 044505 (2014).
http://dx.doi.org/10.1063/1.4891231
17.
A. Fischer, “ A vertical C60 transistor with a permeable base electrode,” Ph.D. thesis, TU-Dresden (2015).
18.
W. Van Roosbroeck, Bell Syst. Tech. J. 29, 560 (1950).
http://dx.doi.org/10.1002/j.1538-7305.1950.tb03653.x
19.
K. Gärtner, Oskar3 [Computer Software] ( WIAS, Berlin, 2014).
20.
D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Devices 16, 64 (1969).
http://dx.doi.org/10.1109/T-ED.1969.16566
21.
R. Hoffman, G. van der Laan, M. de Haas, and K. Tanigaki, Synth. Met. 86, 2355 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)81159-9
22.
T. Matsushima and C. Adachi, Jpn J. Appl. Phys. 46, L1179 (2007).
http://dx.doi.org/10.1143/JJAP.46.L1179
23.
W. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert, P. Blom, D. de Leeuw, and M. Michels, Phys. Rev. Lett. 94, 206601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.206601
24.
R. Coehoorn, W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Rev. B 72, 155206 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.155206
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4962009
Loading
/content/aip/journal/jap/120/9/10.1063/1.4962009
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4962009
2016-09-01
2016-09-26

Abstract

The organic permeable base transistor is a vertical transistor architecture that enables high performance while maintaining a simple low-resolution fabrication. It has been argued that the charge transport through the nano-sized openings of the central base electrode limits the performance. Here, we demonstrate by using 3D drift-diffusion simulations that this is not the case in the relevant operation range. At low current densities, the applied base potential controls the number of charges that can pass through an opening and the opening is the current limiting factor. However, at higher current densities, charges accumulate within the openings and in front of the base insulation, allowing for an efficient lateral transport of charges towards the next opening. The on-state in the current-voltage characteristics reaches the maximum possible current given by space charge limited current transport through the intrinsic semiconductor layers. Thus, even a small effective area of the openings can drive huge current densities, and further device optimization has to focus on reducing the intrinsic layer thickness to a minimum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4962009.html;jsessionid=HM4z1GAIwrefdpAqJDqVOWXQ.x-aip-live-02?itemId=/content/aip/journal/jap/120/9/10.1063/1.4962009&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4962009&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4962009'
Right1,Right2,Right3,