Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, Mater. Sci. Eng. R 71, 1 (2010).
Y. Pan, M. Wu, and Q. Su, Mater. Sci. Eng. B 106, 251 (2004).
V. Bachmann, C. Ronda, and A. Meijerink, Chem. Mater. 21, 2077 (2009).
N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
E. Mihokova, M. Nikl, J. A. Mares, A. Beitlerova, A. Vedda, K. Nejezchleb, K. Blazek, and C. D'Ambrosio, J. Lumin. 126, 77 (2007).
T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Kamada, H. Takahashi, Y. Fukazawa, M. Nikl, and V. Chani, Jpn. J. Appl. Phys. 52, 076401 (2013).
J. A. Mares, M. Nikl, A. Beitlerova, P. Horodysky, K. Blazek, K. Bartos, and C. D'Ambrosio, IEEE Trans. Nucl. Sci. 59, 2120 (2012).
D. T. Haven, P. T. Dickens, M. H. Weber, and K. G. Lynn, J. Appl. Phys. 114, 043102 (2013).
Y. Pan, M. Wu, and Q. Su, J. Phys. Chem. Solids 65, 845 (2004).
S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, Opt. Mater. 33, 688 (2011).
H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, J. Lumin. 126, 371 (2007).
H. Yang and Y. S. Kim, J. Lumin. 128, 1570 (2008).
R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, Nat. Commun. 3, 1029 (2011).
A. Shabaev, A. L. Efros, D. Gammon, and I. A. Merkulov, Phys. Rev. B 68, 20 (2003).
R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, J. Nanopart. Res. 14, 1 (2012).
L. Wang, X. Zhang, Z. Hao, Y. Luo, L. Zhang, R. Zhong, and J. Zhang, J. Electrochem. Soc. 159, F68 (2012).
J. Zhang, L. Wang, Y. Jin, X. Zhang, Z. Hao, and X. J. Wang, J. Lumin. 131, 429 (2011).
D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965).
L. Wang, X. Zhang, Z. Hao, Y. Luo, J. Zhang, and X. J. Wang, J. Appl. Phys. 108, 093515 (2010).
C. H. Chiang, T. H. Liu, H. Y. Lin, H. Y. Kuo, and S. Y. Chu, J. Appl. Phys. 114, 243517 (2013).
M. D. Birowosuto, M. Isnaeni, C. de Mello Donegá, and A. Meijerink, J. Appl. Phys. 118, 123105 (2015).
R. Piramidowicz, K. Ławniczuk, M. Nakielska, J. Sarnecki, and M. Malinowski, J. Lumin. 128, 708 (2008).
G. Özen, O. Forte, and B. Di Bartolo, J. Appl. Phys. 97, 013510 (2005).
G. Özen, O. Forte, B. Di Bartolo, and J. M. Collins, J. Appl. Phys. 102, 023110 (2007).
S. Murai, K. Fujita, K. Iwata, and K. Tanaka, Opt. Mater. 33, 123 (2010).
D. L. Huber, Phys. Rev. B 20, 2307 (1979).
D. L. Huber, Phys. Rev. B 20, 5333 (1979).

Data & Media loading...


Article metrics loading...



A series of Pr3+/Ce3+ doped yttrium aluminium garnet (YAlO or simply YAG) phosphors were synthesized to investigate the energy transfer between Pr3+ and Ce3+ for their potential application in a white light-emitting diode and quantum information storage and processing. The excitation and emission spectra of YAG:Pr3+/Ce3+ were measured and analyzed, and it revealed that the reabsorption between Pr3+ and Ce3+ was so weak that it can be ignored, and the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D) did occur. By analyzing the excitation and the emission spectra, the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D) was examined in detail with an original strategy deduced from fluorescence dynamics and the Dexter energy transfer theory, and the critical distances of energy transfer were derived to be 7.9 Å and 4.0 Å for Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D), respectively. The energy transfer rates of the two processes of various concentrations were discussed and evaluated. Furthermore, for the purpose of sensing a single Pr3+ state with a Ce3+ ion, the optimal distance of Ce3+ from Pr3+ was evaluated as 5.60 Å, where the probability of success reaches its maximum value of 78.66%, and meanwhile the probabilities were evaluated for a series of Y3+ sites in a YAG lattice. These results will be of valuable reference for achievement of the optimal energy transfer efficiency in Pr3+/Ce3+ doped YAG and other similar systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd