Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4962135
1.
S. Guo, “ Phase selection rules for cast high entropy alloys: An overview,” Mater. Sci. Technol. 31, 12231230 (2015).
http://dx.doi.org/10.1179/1743284715Y.0000000018
2.
O. N. Senkov and D. B. Miracle, “ A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys,” J. Alloys Compd. 658, 603607 (2016).
http://dx.doi.org/10.1016/j.jallcom.2015.10.279
3.
Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “ Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater. 10, 534538 (2008).
http://dx.doi.org/10.1002/adem.200700240
4.
Y. Zhang et al., “ Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci. 61, 193 (2014).
http://dx.doi.org/10.1016/j.pmatsci.2013.10.001
5.
K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving, and C. C. Koch, “ A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures,” Mater. Res. Lett. 3, 9599 (2015).
http://dx.doi.org/10.1080/21663831.2014.985855
6.
C. Niu et al., “ Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo,” Appl. Phys. Lett. 106, 161906 (2015).
http://dx.doi.org/10.1063/1.4918996
7.
M.-H. Tsai and J.-W. Yeh, “ High-entropy alloys: A critical review,” Mater. Res. Lett. 2, 107123 (2014).
http://dx.doi.org/10.1080/21663831.2014.912690
8.
J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, “ High-entropy alloys – A new era of exploitation,” Mater. Sci. Forum 560, 19 (2007).
http://dx.doi.org/10.4028/www.scientific.net/MSF.560.1
9.
S. J. Mary, R. Nagalakshmi, and R. Epshiba, “ High entropy alloys properties and its applications – An overview,” Eur. Chem. Bull. 4, 279284 (2015).
10.
D. B. Miracle, “ Critical assessment 14: High entropy alloys and their development as structural materials,” Mater. Sci. Technol. 31, 11421147 (2015).
http://dx.doi.org/10.1179/1743284714Y.0000000749
11.
O. N. Senkov, C. Woodward, and D. B. Miracle, “ Microstructure and properties of aluminum-containing refractory high-entropy alloys,” JOM 66, 20302042 (2014).
http://dx.doi.org/10.1007/s11837-014-1066-0
12.
O. N. Senkov, S. V. Senkova, D. B. Miracle, and C. Woodward, “ Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system,” Mater. Sci. Eng. A 565, 5162 (2013).
http://dx.doi.org/10.1016/j.msea.2012.12.018
13.
O. N. Senkov, S. V. Senkova, C. Woodward, and D. B. Miracle, “ Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis,” Acta Mater. 61, 15451557 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.11.032
14.
O. N. Senkov et al., “ Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy,” J. Mater. Sci. 47, 65226534 (2012).
http://dx.doi.org/10.1007/s10853-012-6582-0
15.
C. M. Rost et al., “ Entropy-stabilized oxides,” Nat. Commun. 6, 8485 (2015).
http://dx.doi.org/10.1038/ncomms9485
16.
D. Berardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe, “ Colossal dielectric constant in high entropy oxides,” Phys. Status Solidi RRL 10, 328333 (2016).
http://dx.doi.org/10.1002/pssr.201600043
17.
D. Berardan, S. Franger, A. K. Meena, and N. Dragoe, “ Room temperature lithium superionic conductivity in high entropy oxides,” J. Mater. Chem. A 4, 95369541 (2016).
http://dx.doi.org/10.1039/C6TA03249D
18.
C. M. Rost, “ Entropically-stabilized oxides: Explorations of a novel class of multicomponent materials,” Ph.D. thesis, North Carolina State University, 2016.
19.
M. C. Troparevsky, J. R. Morris, P. R. C. Kent, A. R. Lupini, and G. M. Stocks, “ Criteria for predicting the formation of single-phase high-entropy alloys,” Phys. Rev. X 5, 011041 (2015).
http://dx.doi.org/10.1103/PhysX.5.011041
20.
M. C. Troparevsky et al., “ Beyond atomic sizes and hume-rothery rules: Understanding and predicting high-entropy alloys,” JOM 67, 23502363 (2015).
http://dx.doi.org/10.1007/s11837-015-1594-2
21.
R. Shannon, “ Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A 32, 751767 (1976).
http://dx.doi.org/10.1107/S0567739476001551
22.
N. Kato and A. R. Lang, “ A study of Pendellossung fringes in x-ray diffraction,” Acta Crystallogr. 12, 787 (1959).
http://dx.doi.org/10.1107/S0365110X59002262
23.
Q. Shen, Methods in Materials Research ( John Wiley & Sons, 2000), Vol. 8.
24.
P. E. Blöchl, “ Projector augmented-wave method,” Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
25.
G. Kresse and J. Furthmüller, “ Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
26.
G. Kresse and J. Furthmüller, “ Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B: Condens. Matter 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
27.
G. Kresse and J. Hafner, “ Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558561 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
28.
J. Perdew, K. Burke, and M. Ernzerhof, “ Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
29.
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “ Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57, 15051509 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
30.
C. E. Calderon et al., “ The AFLOW standard for high-throughput materials science calculations,” Comput. Mater. Sci. 108, 233238 (2015).
http://dx.doi.org/10.1016/j.commatsci.2015.07.019
31.
G. Henkelman, A. Arnaldsson, and H. Jónsson, “ A fast and robust algorithm for Bader decomposition of charge density,” Comput. Mater. Sci. 36, 354360 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
32.
A. Zunger, S. Wei, L. Ferreira, and J. Bernard, “ Special quasirandom structures,” Phys. Rev. Lett. 65, 353356 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.353
33.
G. Jacucci, I. R. McDonald, and K. Singer, “ Introduction of the shell model of ionic polarizability into molecular dynamics calculations,” Phys. Lett. A 50, 141143 (1974).
http://dx.doi.org/10.1016/0375-9601(74)90911-6
34.
A. K. Rappé and W. A. Goddard III, “ Charge equilibration for molecular dynamics simulations,” J. Phys. Chem. 95, 33583363 (1991).
http://dx.doi.org/10.1021/j100161a070
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4962135
Loading
/content/aip/journal/jap/120/9/10.1063/1.4962135
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4962135
2016-09-06
2016-09-28

Abstract

Density functional theory calculations were carried out for three entropic rocksalt oxides, (MgCo Ni Cu Zn )O, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co+3 in J14 + Li are very different from Co+2, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4962135.html;jsessionid=vRh--jMdW1JwbLALklRi-IHS.x-aip-live-03?itemId=/content/aip/journal/jap/120/9/10.1063/1.4962135&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4962135&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4962135'
Right1,Right2,Right3,