Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4962199
1.
C. R. Guiliano and L. D. Hess, IEEE J. Quantum Electron. 3, 358 (1967).
http://dx.doi.org/10.1109/JQE.1967.1074603
2.
L. W. Tutt and T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993).
http://dx.doi.org/10.1016/0079-6727(93)90004-S
3.
R. A. Ganeev and T. B. Usmanov, Quantum Electron. 37, 605 (2007).
http://dx.doi.org/10.1070/QE2007v037n07ABEH013367
4.
J. Wang and W. J. Blau, Opt. A 11, 024001 (2009).
http://dx.doi.org/10.1088/1464-4258/11/2/024001
5.
Z. B. Liu, X. L. Zhang, X. Q. Yan, Y. S. Chen, and J. G. Tian, Chin. Sci. Bull. 57, 2971 (2012).
http://dx.doi.org/10.1007/s11434-012-5270-4
6.
I. E. Borissevitch, N. Rakov, G. S. Maciel, and C. B. Araujo, Appl. Opt. 39, 4431 (2000).
http://dx.doi.org/10.1364/AO.39.004431
7.
M. B. M. Krishna, V. P. Kumar, N. Venkatramaiah, R. Venkatesan, and D. N. Rao, Appl. Phys. Lett. 98, 081106 (2011).
http://dx.doi.org/10.1063/1.3553500
8.
A. Wang, Y. Fang, W. Yu, L. Long, Y. Song, W. Zhao, M. P. Cifuentes, M. G. Humphrey, and C. Zhang, Chem.: Asian J. 9, 639 (2014).
http://dx.doi.org/10.1002/asia.201301379
9.
T. N. Kopylova, A. P. Lugovsky, V. M. Podgaertsky, O. V. Ponomareva, and V. A. Svetlichnyi, Quantum Electron. 36, 274 (2006).
http://dx.doi.org/10.1070/QE2006v036n03ABEH013134
10.
I. M. Belousova, D. A. Videnichev, I. M. Kislyakov, A. A. Ryzhov, O. B. Danilov, V. M. Volynkin, Z. B. Vedenyapina, G. A. Muranova, and T. D. Murav'eva, Opt. Technol. 80, 18 (2013).
http://dx.doi.org/10.1364/JOT.80.000018
11.
J. Wang and W. J. Blau, Phys. Chem. C 112, 2298 (2008).
http://dx.doi.org/10.1021/jp709926r
12.
L. Vivien, D. Riehl, J. F. Delouis, J. A. Delaire, F. Hache, and E. Anglaret, Opt. Soc. Am. B 19, 208 (2002).
http://dx.doi.org/10.1364/JOSAB.19.000208
13.
N. Izard, C. Menard, D. Riehl, E. Doris, C. Mioskowski, and E. Anglaret, Chem. Phys. Lett. 391, 124 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.05.001
14.
S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay, A. Govindaraj, and C. N. R. Rao, Chem. Phys. Lett. 317, 510 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01304-4
15.
N. Izard, P. Billaud, D. Riehl, and E. Anglaret, Opt. Lett. 30, 1509 (2005).
http://dx.doi.org/10.1364/OL.30.001509
16.
S. Webster, M. Reyes-Reyes, X. Pedron, R. Lopez-Sandoval, M. Terrones, and D. L. Carroll, Adv. Mater. 17, 1239 (2005).
http://dx.doi.org/10.1002/adma.200401772
17.
L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, Opt. Lett. 26, 223 (2001).
http://dx.doi.org/10.1364/OL.26.000223
18.
Yu. Chen, Y. Lin, Y. Liu, J. Doyle, N. He, X. Zhuang, J. Bai, and W. J. Blau, Nanosci. Nanotechnol. 7, 1268 (2007).
http://dx.doi.org/10.1166/jnn.2007.308
19.
A. Sarkar, A. Thankappan, and V. P. N. Nampoori, Adv. Mater. 39, 211 (2015).
20.
O. Muller, S. Dengler, G. Ritt, and B. Eberle, Appl. Opt. 52, 139 (2013).
http://dx.doi.org/10.1364/AO.52.000139
21.
L. Jyothi, R. Kuladeep, and D. Narayana Rao, Nanophotonics 9, 093088 (2015).
http://dx.doi.org/10.1117/1.JNP.9.093088
22.
J. Wang, K.-S. Liao, D. Fruchtl, Y. Tian, A. Gilchrist, N. J. Alley, E. Andreoli, B. Aitchison, A. G. Nasibulin, H. J. Byrne, E. I. Kauppinen, L. Zhang, W. J. Blau, and S. A. Curran, Mater. Chem. Phys. 133, 992 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2012.02.003
23.
J. Wang, D. Fruchtl, Z. Sun, J. N. Coleman, and W. J. Blau, Phys. Chem. C 114, 6148 (2010).
http://dx.doi.org/10.1021/jp9117248
24.
S. Yellampalli, Carbon Nanotubes—Synthesis, Characterization, Applications ( InTech, Rijeka, 2011), p. 514.
25.
X. L. Zhang, Z. B. Liu, X. Q. Yan, X. C. Li, Y. S. Chen, and J. G. Tian, J. Opt. 17, 1 (2015).
26.
J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, Appl. Phys. 109, 113101 (2011).
http://dx.doi.org/10.1063/1.3587178
27.
Z.-B. Liu, Z. Guo, X.-L. Zhang, J.-Y. Zheng, and J.-G. Tian, Carbon 51, 419 (2013).
http://dx.doi.org/10.1016/j.carbon.2012.09.005
28.
W. Yi, W. Feng, C. Zhang, Y. Long, Z. Zhang, B. Li, and H. Wu, Appl. Phys. 100, 094301 (2006).
http://dx.doi.org/10.1063/1.2363550
29.
L. Zhang and L. Wang, Polym. Plast. Technol. Eng. 51, 6 (2012).
http://dx.doi.org/10.1080/03602559.2011.603785
30.
B. Anand, R. Podila, P. Ayala, L. Oliveira, R. Philip, S. S. Sai, A. A. Zakhidov, and A. M. Rao, Nanoscale 5, 7271 (2013).
http://dx.doi.org/10.1039/c3nr01803b
31.
Z. Jin, X. Sun, G. Xu, S. H. Goh, and W. Ji, Chem. Phys. Lett. 318, 505 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00091-9
32.
A. N. Khlobystov, D. A. Britz, and G. A. Briggs, Acc. Chem. Res. 38, 901 (2005).
http://dx.doi.org/10.1021/ar040287v
33.
S. Cambre, J. Campo, C. Beirnaert, C. Verlackt, P. Cool, and W. Wenseleers, Nat. Nanotechnol. 10, 248 (2015).
http://dx.doi.org/10.1038/nnano.2015.1
34.
O. Hayden and K. Nielsch, Molecular- and Nano-Tubes ( Springer, New York, 2011), p. 473.
35.
N. Liaros, K. Iliopoulos, M. M. Stylianakis, E. Koudoumas, and S. Couris, Opt. Mater. 36, 112 (2013).
http://dx.doi.org/10.1016/j.optmat.2013.04.036
36.
Z. Sun, N. Dong, K. Xie, W. Xia, D. Konig, T. C. Nagaiah, M. D. Sanchez, P. Ebbinghaus, A. Erbe, X. Zhang, A. Ludwig, W. Schuhmann, J. Wang, and M. Muhler, Phys. Chem. C 117, 11811 (2013).
http://dx.doi.org/10.1021/jp401736n
37.
X. Cheng, N. Dong, B. Li, X. Zhang, S. Zhang, J. Jiao, W. J. Blau, L. Zhang, and J. Wang, Opt. Express 21, 16486 (2013).
http://dx.doi.org/10.1364/OE.21.016486
38.
M. K. Kavitha, J. Honey, G. Pramod, and P. Reji, Mater. Chem. C 1, 3669 (2013).
http://dx.doi.org/10.1039/c3tc30323c
39.
Z. B. Liu, Y. F. Xu, X. Y. Zhang, X. L. Zhang, Y. S. Chen, and J. G. Tian, Phys. Chem. B 113, 9681 (2009).
http://dx.doi.org/10.1021/jp9004357
40.
M. Zhang, G. Li, and L. Li, Mater. Chem. C 2, 1482 (2014).
http://dx.doi.org/10.1039/c3tc31847h
41.
Z. Xiaoqing, F. Miao, and H. Zhan, Mater. Chem. C 1, 6759 (2013).
http://dx.doi.org/10.1039/c3tc31314j
42.
Q. Ouyang, Z. Xu, Z. Lei, H. Dong, H. Yu, L. Qi, C. Li, and Y. Chen, Carbon 67, 214 (2014).
http://dx.doi.org/10.1016/j.carbon.2013.09.083
43.
G.-K. Lim, Z.-L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L.-L. Chua, Nat. Photonics. 5, 554 (2011).
http://dx.doi.org/10.1038/nphoton.2011.177
44.
J. Hsu, C. Fuentes-Hernandez, A. R. Ernst, J. M. Hales, J. W. Perry, and B. Kippelen, Opt. Express 20, 8629 (2012).
http://dx.doi.org/10.1364/OE.20.008629
45.
I. M. Belousova, O. B. Danilov, and A. I. Sidorov, Opt. Technol. 76, 223 (2009).
http://dx.doi.org/10.1364/JOT.76.000223
46.
A. Yu. Gerasimenko and V. M. Podgaetskii, Quantum Electron. 42, 591 (2012).
http://dx.doi.org/10.1070/QE2012v042n07ABEH014704
47.
S. A. Tereshchenko, V. M. Podgaetskii, A. Yu. Gerasimenko, and M. S. Savel'ev, Opt. Spectrosc. 116, 454 (2014).
http://dx.doi.org/10.1134/S0030400X14030217
48.
M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
http://dx.doi.org/10.1109/3.53394
49.
S. A. Tereshchenko and V. M. Podgaetskii, Quantum Electron. 41, 26 (2011).
http://dx.doi.org/10.1070/QE2011v041n01ABEH014412
50.
A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems ( Springer, Netherlands, 1995), p. 254.
51.
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems ( Winston & Sons, New York, 1977), p. 272.
52.
H. W. Engl and C. W. Groetsch, Inverse and Ill-Posed Problems ( Academic Press, New York, 1987), p. 584.
53.
A. Yu. Gerasimenko, V. M. Podgaetsky, M. S. Saveliev, and S. A. Tereshchenko, Biomed. Eng. 48, 324 (2015).
http://dx.doi.org/10.1007/s10527-015-9479-9
54.
S. A. Tereshchenko, V. M. Podgaetskii, A. Yu. Gerasimenko, and M. S. Savel'ev, Quantum Electron. 45, 315 (2015).
http://dx.doi.org/10.1070/QE2015v045n04ABEH015569
55.
O. Svelto, Principles of Lasers ( Springer, New York, 2010), p. 620.
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4962199
Loading
/content/aip/journal/jap/120/9/10.1063/1.4962199
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4962199
2016-09-06
2016-09-27

Abstract

A threshold model is described which permits one to determine the properties of limiters for high-powered laser light. It takes into account the threshold characteristics of the nonlinear optical interaction between the laser beam and the limiter working material. The traditional non-threshold model is a particular case of the threshold model when the limiting threshold is zero. The nonlinear characteristics of carbon nanotubes in liquid and solid media are obtained from experimental Z-scan data. Specifically, the nonlinear threshold effect was observed for aqueous dispersions of nanotubes, but not for nanotubes in solid polymethylmethacrylate. The threshold model fits the experimental Z-scan data better than the non-threshold model. Output characteristics were obtained that integrally describe the nonlinear properties of the optical limiters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4962199.html;jsessionid=eQB8ghcJwppzGWH2Cu0pjm8V.x-aip-live-06?itemId=/content/aip/journal/jap/120/9/10.1063/1.4962199&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4962199&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4962199'
Right1,Right2,Right3,