Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4962202
1.
J. Robertson, Rep. Prog. Phys. 69, 327 (2006).
http://dx.doi.org/10.1088/0034-4885/69/2/R02
2.
H. Shang, M. M. Frank, E. P. Gusev, J. O. Chu, S. W. Bedell, K. W. Guarini, and M. Ieong, IBM J. Res. Dev. 50, 377 (2006).
http://dx.doi.org/10.1147/rd.504.0377
3.
K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, Jpn. J. Appl. Phys., Part 1 47, 2349 (2008).
http://dx.doi.org/10.1143/JJAP.47.2349
4.
K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, ECS Trans. 11, 461 (2007).
http://dx.doi.org/10.1149/1.2779582
5.
K. Prabhakaran and T. Ogino, Surf. Sci. 325, 263 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00746-2
6.
H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, Appl. Phys. Lett. 93, 032104 (2008).
http://dx.doi.org/10.1063/1.2959731
7.
K. Kutsuki, G. Okamoto, T. Hosoi, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 95, 022102 (2009).
http://dx.doi.org/10.1063/1.3171938
8.
F. Bellenger, M. Houssa, A. Delabie, V. V. Afanas'ev, T. Conard, M. Caymax, M. Meuris, K. De Meyer, and M. M. Heyns, J. Electrochem. Soc. 155, G33 (2008).
http://dx.doi.org/10.1149/1.2819626
9.
A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. Van Elshocht, M. Caymax, M. Heyns, and M. Meuris, Appl. Phys. Lett. 91, 082904 (2007).
http://dx.doi.org/10.1063/1.2773759
10.
C. M. Lu, C. H. Lee, W. F. Zhang, T. Nishimura, K. Nagashio, and A. Toriumi, Appl. Phys. Lett. 104, 092909 (2014).
http://dx.doi.org/10.1063/1.4868032
11.
C. Lu, C. H. Lee, W. Zhang, T. Nishimura, K. Nagashio, and A. Toriumi, J. Appl. Phys. 116, 174103 (2014).
http://dx.doi.org/10.1063/1.4901205
12.
T. Hosoi, K. Kutsuki, G. Okamoto, M. Saito, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 94, 202112 (2009).
http://dx.doi.org/10.1063/1.3143627
13.
Y. Oniki and T. Ueno, Appl. Phys. Express 4, 081101 (2011).
http://dx.doi.org/10.1143/APEX.4.081101
14.
Y. Oniki and T. Ueno, Jpn. J. Appl. Phys., Part 1 51, 04DA01 (2012).
http://dx.doi.org/10.7567/JJAP.51.04DA01
15.
S. Ogawa, T. Suda, T. Yamamoto, K. Kutsuki, I. Hideshima, T. Hosoi, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 99, 142101 (2011).
http://dx.doi.org/10.1063/1.3644393
16.
W. F. Zhang, T. Nishimula, K. Nagashio, K. Kita, and A. Toriumi, Appl. Phys. Lett. 102, 102106 (2013).
http://dx.doi.org/10.1063/1.4794417
17.
A. Mura, I. Hideshima, Z. Liu, T. Hosoi, H. Watanabe, and K. Arima, J. Phys. Chem. C 117, 165 (2013).
http://dx.doi.org/10.1021/jp304331c
18.
S. Morita, A. Shinozaki, Y. Morita, K. Nishimura, T. Okazaki, S. Urabe, and M. Morita, Jpn. J. Appl. Phys., Part 1 43, 7857 (2004).
http://dx.doi.org/10.1143/JJAP.43.7857
19.
M. E. Grass, P. G. Karlsson, F. Aksoy, M. Lundqvist, B. Wannberg, B. S. Mun, Z. Hussain, and Z. Liu, Rev. Sci. Instrum. 81, 053106 (2010).
http://dx.doi.org/10.1063/1.3427218
20.
D. F. Ogletree, H. Bluhm, G. Lebedev, C. S. Fadley, Z. Hussain, and M. Salmeron, Rev. Sci. Instrum. 73, 3872 (2002).
http://dx.doi.org/10.1063/1.1512336
21.
M. Salmeron and R. Schlogl, Surf. Sci. Rep. 63, 169 (2008).
http://dx.doi.org/10.1016/j.surfrep.2008.01.001
22.
NIST X-ray Photoelectron Spectroscopy Database; National Institute of Standards and Technology: Gaithersburg, MD.
23.
C. J. Powell, J. Electron Spectrosc. Relat. Phenom. 185, 1 (2012).
http://dx.doi.org/10.1016/j.elspec.2011.12.001
24.
Note that the bulk peak of Ge was fixed at 29.7 eV in our previous paper,17 which was reported as the value for Ge 3d.22 Because we found 29.36 eV to be the binding energy of a more specific Ge 3d5/2 core line signal for the Ge bulk,23 we used it as the energy reference for the measured Ge 3d spectra.
25.
NIST Electron Inelastic-Mean-Free-Path Database; National Institute of Standards and Technology: Gaithersburg, MD.
26.
F. J. Himpsel, F. R. McFeely, A. Talebibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.6084
27.
K. Arima, P. Jiang, X. Y. Deng, H. Bluhm, and M. Salmeron, J. Phys. Chem. C 114, 14900 (2010).
http://dx.doi.org/10.1021/jp101683z
28.
A. Verdaguer, C. Weis, G. Oncins, G. Ketteler, H. Bluhm, and M. Salmeron, Langmuir 23, 9699 (2007).
http://dx.doi.org/10.1021/la700893w
29.
M. Matsui, H. Murakami, T. Fujioka, A. Ohta, S. Higashi, and S. Miyazaki, Microelectron. Eng. 88, 1549 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.032
30.
D. B. Asay and S. H. Kim, J. Phys. Chem. B 109, 16760 (2005).
http://dx.doi.org/10.1021/jp053042o
31.
A. L. Sumner, E. J. Menke, Y. Dubowski, J. T. Newberg, R. M. Penner, J. C. Hemminger, L. M. Wingen, T. Brauers, and B. J. Finlayson-Pitts, Phys. Chem. Chem. Phys. 6, 604 (2004).
http://dx.doi.org/10.1039/b308125g
32.
G. Ketteler, S. Yamamoto, H. Bluhm, K. Andersson, D. E. Starr, D. F. Ogletree, H. Ogasawara, A. Nilsson, and M. Salmeron, J. Phys. Chem. C 111, 8278 (2007).
http://dx.doi.org/10.1021/jp068606i
33.
X. Deng, T. Herranz, C. Weis, H. Bluhm, and M. Salmeron, J. Phys. Chem. C 112, 9668 (2008).
http://dx.doi.org/10.1021/jp800944r
34.
S. Yamamoto, T. Kendelewicz, J. T. Newberg, G. Ketteler, D. E. Starr, E. R. Mysak, K. J. Andersson, H. Ogasawara, H. Bluhm, M. Salmeron, G. E. Brown, and A. Nilsson, J. Phys. Chem. C 114, 2256 (2010).
http://dx.doi.org/10.1021/jp909876t
35.
J. T. Newberg, D. E. Starr, S. Yamamoto, S. Kaya, T. Kendelewicz, E. R. Mysak, S. Porsgaard, M. B. Salmeron, G. E. Brown, A. Nisson, and H. Bluhm, J. Phys. Chem. C 115, 12864 (2011).
http://dx.doi.org/10.1021/jp200235v
36.
S. Yamamoto, K. Andersson, H. Bluhm, G. Ketteler, D. E. Starr, T. Schiros, H. Ogasawara, L. G. M. Pettersson, M. Salmeron, and A. Nilsson, J. Phys. Chem. C 111, 7848 (2007).
http://dx.doi.org/10.1021/jp0731654
37.
G. Hollinger, Appl. Surf. Sci. 8, 318 (1981).
http://dx.doi.org/10.1016/0378-5963(81)90126-4
38.
S. Iwata and A. Ishizaka, J. Appl. Phys. 79, 6653 (1996).
http://dx.doi.org/10.1063/1.362676
39.
K. Z. Zhang, J. N. Greeley, M. M. B. Holl, and F. R. McFeely, J. Appl. Phys. 82, 2298 (1997).
http://dx.doi.org/10.1063/1.366037
40.
H. Kobayashi, T. Kubota, H. Kawa, Y. Nakato, and M. Nishiyama, Appl. Phys. Lett. 73, 933 (1998).
http://dx.doi.org/10.1063/1.122042
41.
J. W. Keister, J. E. Rowe, J. J. Kolodziej, H. Niimi, H. S. Tao, T. E. Madey, and G. Lucovsky, J. Vac. Sci. Technol. A 17, 1250 (1999).
http://dx.doi.org/10.1116/1.581805
42.
E. K. Enikeev, A. Y. Loginov, and G. F. Golovanova, Russ. Chem. Bull. 24, 2044 (1975).
http://dx.doi.org/10.1007/BF00929720
43.
Y. Oniki, H. Koumo, Y. Iwazaki, and T. Ueno, J. Appl. Phys. 107, 124113 (2010).
http://dx.doi.org/10.1063/1.3452367
44.
D. Schmeisser, R. D. Schnell, A. Bogen, F. J. Himpsel, D. Rieger, G. Landgren, and J. F. Morar, Surf. Sci. 172, 455 (1986).
http://dx.doi.org/10.1016/0039-6028(86)90767-3
45.
Y. Wang, Y. Z. Hu, and E. A. Irene, J. Vac. Sci. Technol. A 12, 1309 (1994).
http://dx.doi.org/10.1116/1.579313
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4962202
Loading
/content/aip/journal/jap/120/9/10.1063/1.4962202
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4962202
2016-09-02
2016-09-27

Abstract

The energy difference between the oxide and bulk peaks in X-ray photoelectron spectroscopy (XPS) spectra was investigated for both GeO/Ge and SiO/Si structures with thickness-controlled water films. This was achieved by obtaining XPS spectra at various values of relative humidity (RH) of up to ∼15%. The increase in the energy shift is more significant for thermal GeO on Ge than for thermal SiO on Si above ∼10−4% RH, which is due to the larger amount of water molecules that infiltrate into the GeO film to form hydroxyls. Analyzing the origins of this energy shift, we propose that the positive charging of a partially hydroxylated GeO film, which is unrelated to X-ray irradiation, causes the larger energy shift for GeO/Ge than for SiO/Si. A possible microscopic mechanism of this intrinsic positive charging is the emission of electrons from adsorbed water species in the suboxide layer of the GeO film to the Ge bulk, leaving immobile cations or positively charged states in the oxide. This may be related to the reported negative shift of flat band voltages in metal-oxide-semiconductor diodes with an air-exposed GeO layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4962202.html;jsessionid=XyGPigYE11cdJrSdPJLCCChX.x-aip-live-06?itemId=/content/aip/journal/jap/120/9/10.1063/1.4962202&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4962202&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4962202'
Right1,Right2,Right3,