Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4962213
1.
B. D. Terris, T. Thomson, and G. Hu, Microsyst. Technol. 13, 189 (2006).
http://dx.doi.org/10.1007/s00542-006-0144-9
2.
S. Piramanayagam and K. Srinivasan, J. Magn. Magn. Mater. 321, 485 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.05.007
3.
T. R. Albrecht, H. Arora, V. Ayanoor-Vitikkate, J.-M. Beaujour, D. Bedau, D. Berman, A. L. Bogdanov, Y.-A. Chapuis, J. Cushen, E. E. Dobisz, G. Doerk, H. Gao, M. Grobis, B. Gurney, W. Hanson, O. Hellwig, T. Hirano, P.-O. Jubert, D. Kercher, J. Lille, Z. Liu, C. M. Mate, Y. Obukhov, K. C. Patel, K. Rubin, R. Ruiz, M. Schabes, L. Wan, D. Weller, T.-W. Wu, and E. Yang, IEEE Trans. Magn. 51, 1 (2015).
http://dx.doi.org/10.1109/TMAG.2015.2397880
4.
M. Albrecht, C. T. Rettner, A. Moser, M. E. Best, and B. D. Terris, Appl. Phys. Lett. 81, 2875 (2002).
http://dx.doi.org/10.1063/1.1512946
5.
R. H. Victora, X. Jianhua, and M. Patwari, IEEE Trans. Magn. 38, 1886 (2002).
http://dx.doi.org/10.1109/TMAG.2002.802791
6.
D. Süss, J. Magn. Magn. Mater. 308, 183 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.05.021
7.
A. Goncharov, T. Schrefl, G. Hrkac, J. Dean, S. Bance, D. Suess, O. Ertl, F. Dorfbauer, and J. Fidler, Appl. Phys. Lett. 91, 222502 (2007).
http://dx.doi.org/10.1063/1.2804609
8.
R. Sbiaa, K. O. Aung, S. N. Piramanayagam, E.-L. Tan, and R. Law, J. Appl. Phys. 105, 073904 (2009).
http://dx.doi.org/10.1063/1.3093699
9.
H. Richter, A. Dobin, O. Heinonen, K. Gao, R. v. d. Veerdonk, R. Lynch, J. Xue, D. Weller, P. Asselin, M. Erden, and R. Brockie, IEEE Trans. Magn. 42, 2255 (2006).
http://dx.doi.org/10.1109/TMAG.2006.878392
10.
O. Hellwig, A. Berger, T. Thomson, E. Dobisz, Z. Z. Bandic, H. Yang, D. S. Kercher, and E. E. Fullerton, Appl. Phys. Lett. 90, 162516 (2007).
http://dx.doi.org/10.1063/1.2730744
11.
B. Pfau, C. M. Günther, E. Guehrs, T. Hauet, T. Hennen, S. Eisebitt, and O. Hellwig, Appl. Phys. Lett. 105, 132407 (2014).
http://dx.doi.org/10.1063/1.4896982
12.
V. Repain, J. Appl. Phys. 95, 2614 (2004).
http://dx.doi.org/10.1063/1.1645973
13.
T. Thomson, G. Hu, and B. D. Terris, Phys. Rev. Lett. 96, 257204 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.257204
14.
B. Pfau, C. M. Gunther, E. Guehrs, T. Hauet, H. Yang, L. Vinh, X. Xu, D. Yaney, R. Rick, S. Eisebitt, and O. Hellwig, Appl. Phys. Lett. 99, 062502 (2011).
http://dx.doi.org/10.1063/1.3623488
15.
J. Lee, C. Brombacher, J. Fidler, B. Dymerska, D. Suess, and M. Albrecht, Appl. Phys. Lett. 99, 062505 (2011).
http://dx.doi.org/10.1063/1.3623752
16.
A. Kikitsu, J. Magn. Magn. Mater. 321, 526 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.05.039
17.
P. Krone, D. Makarov, T. Schrefl, and M. Albrecht, J. Appl. Phys. 109, 103901 (2011).
http://dx.doi.org/10.1063/1.3583653
18.
H. Oezelt, A. Kovacs, F. Reichel, J. Fischbacher, S. Bance, M. Gusenbauer, C. Schubert, M. Albrecht, and T. Schrefl, J. Magn. Magn. Mater. 381, 28 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.12.045
19.
H. Oezelt, A. Kovacs, P. Wohlhüter, E. Kirk, D. Nissen, P. Matthes, L. J. Heyderman, M. Albrecht, and T. Schrefl, J. Appl. Phys. 117, 17E501 (2015).
http://dx.doi.org/10.1063/1.4906288
20.
M. Mansuripur, The Physical Principles of Magneto-optical Recording ( Cambridge University Press, 1995), pp. 652654.
21.
T. Schrefl, G. Hrkac, S. Bance, D. Süss, O. Ertl, and J. Fidler, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller and S. Parkin ( John Wiley & Sons, Ltd., 2007), pp. 130.
22.
A. Shukh, IEEE Trans. Magn. 40, 2585 (2004).
http://dx.doi.org/10.1109/TMAG.2004.829315
23.
E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc., A 240, 599 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
24.
H. Muraoka and S. J. Greaves, IEEE Trans. Magn. 47, 26 (2011).
http://dx.doi.org/10.1109/TMAG.2010.2080354
25.
H. Muraoka, S. Greaves, and Y. Kanai, IEEE Trans. Magn. 44, 3423 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2001654
26.
Y. Dong and R. H. Victora, IEEE Trans. Magn. 47, 2652 (2011).
http://dx.doi.org/10.1109/TMAG.2011.2148112
27.
S. Greaves, Y. Kanai, and H. Muraoka, IEEE Trans. Magn. 44, 3430 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2002365
28.
M. Mansuripur, R. Giles, and G. Patterson, J. Appl. Phys. 69, 4844 (1991).
http://dx.doi.org/10.1063/1.348250
29.
R. Quey, P. Dawson, and F. Barbe, Comput. Methods Appl. Mech. Eng. 200, 1729 (2011).
http://dx.doi.org/10.1016/j.cma.2011.01.002
30.
W. F. Brown, J. Appl. Phys. 30, S62 (1959).
http://dx.doi.org/10.1063/1.2185970
31.
T. Hauet, E. Dobisz, S. Florez, J. Park, B. Lengsfield, B. D. Terris, and O. Hellwig, Appl. Phys. Lett. 95, 262504 (2009).
http://dx.doi.org/10.1063/1.3276911
32.
F. B. Hagedorn, J. Appl. Phys. 41, 2491 (1970).
http://dx.doi.org/10.1063/1.1659251
33.
R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.15812
34.
H. Kronmüller and D. Goll, Phys. B: Condens. Matter 319, 122 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)01113-4
35.
A. Y. Dobin and H. J. Richter, J. Appl. Phys. 101, 09K108 (2007).
http://dx.doi.org/10.1063/1.2714271
36.
R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, and J. Fidler, J. Magn. Magn. Mater. 250, 12 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00388-8
37.
D. Suess, T. Schrefl, S. Fähler, M. Kirschner, G. Hrkac, F. Dorfbauer, and J. Fidler, Appl. Phys. Lett. 87, 012504 (2005).
http://dx.doi.org/10.1063/1.1951053
38.
J. Dean, M. A. Bashir, A. Goncharov, G. Hrkac, S. Bance, T. Schrefl, A. Cazacu, M. Gubbins, R. W. Lamberton, and D. Suess, Appl. Phys. Lett. 92, 142505 (2008).
http://dx.doi.org/10.1063/1.2905292
39.
R. Victora and X. Shen, Proc. IEEE 96, 1799 (2008).
http://dx.doi.org/10.1109/JPROC.2008.2004314
40.
A. Kovacs, H. Oezelt, M. E. Schabes, and T. Schrefl, J. Appl. Phys. 120, 013902 (2016).
http://dx.doi.org/10.1063/1.4954888
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4962213
Loading
/content/aip/journal/jap/120/9/10.1063/1.4962213
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4962213
2016-09-06
2016-09-25

Abstract

We investigate the switching field distribution and the resulting bit error rate of exchange coupled ferri-/ferromagnetic bilayer island arrays by micromagnetic simulations. Using islands with varying microstructure and anisotropic properties, the intrinsic switching field distribution is computed. The dipolar contribution to the switching field distribution is obtained separately by using a model of a triangular patterned island array resembling bit patterned media. Both contributions are computed for different thicknesses of the soft exchange coupled ferrimagnet and also for ferromagnetic single phase FePt islands. A bit patterned media with a bilayer structure of FeGd()/FePt() shows a bit error rate of with a write field of .

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4962213.html;jsessionid=wGM6HIhChKERDPdNuT_SEdRB.x-aip-live-02?itemId=/content/aip/journal/jap/120/9/10.1063/1.4962213&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4962213&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4962213'
Right1,Right2,Right3,