Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4962214
1.
S. J. Sweeney and S. R. Jin, J. Appl. Phys. 113, 043110 (2013).
http://dx.doi.org/10.1063/1.4789624
2.
W. J. Fan, J. Appl. Phys. 113, 083102 (2013).
http://dx.doi.org/10.1063/1.4793279
3.
S. Imhof, C. Bckers, A. Thrnhardt, J. Hader, J. V. Moloney, and S. W. Koch, Semicond. Sci. Technol. 23, 125009 (2008).
http://dx.doi.org/10.1088/0268-1242/23/12/125009
4.
S. J. Sweeney, Z. Batool, K. Hild, S. R. Jin, and T. J. C. Hosea, in 2011 13th International Conference on Transparent Optical Networks (2011), pp. 14.
5.
M. Su, C. Li, P. Yuan, F. Rao, Y. Jia, and F. Wang, Opt. Express 22, 30633 (2014).
http://dx.doi.org/10.1364/OE.22.030633
6.
M. Usman, C. A. Broderick, and E. P. OReilly, AIP Conf. Proc. 1566, 21 (2013).
http://dx.doi.org/10.1063/1.4848265
7.
Z.-G. Song, S. Bose, W.-J. Fan, and S.-S. Li, J. Appl. Phys. 119, 143103 (2016).
http://dx.doi.org/10.1063/1.4945700
8.
C. A. Broderick, P. E. Harnedy, and E. P. OReilly, IEEE J. Sel. Top. Quantum Electron. 21, 287 (2015).
http://dx.doi.org/10.1109/JSTQE.2015.2448652
9.
A. B. Nasr, M. Habchi, C. Bilel, A. Rebey, and B. E. Jani, J. Alloys Compd. 647, 159 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.06.105
10.
M. Gladysiewicz, R. Kudrawiec, and M. S. Wartak, J. Appl. Phys. 118, 055702 (2015).
http://dx.doi.org/10.1063/1.4927922
11.
C. A. Broderick, M. Usman, and E. P. O'Reilly, Semicond. Sci. Technol. 28, 125025 (2013).
http://dx.doi.org/10.1088/0268-1242/28/12/125025
12.
H.-X. Deng, J. Li, S.-S. Li, H. Peng, J.-B. Xia, L.-W. Wang, and S.-H. Wei, Phys. Rev. B 82, 193204 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.193204
13.
I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
http://dx.doi.org/10.1063/1.1600519
14.
S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, Phys. Rev. B 72, 115341 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.115341
15.
S. Bose, Z. Song, W. J. Fan, and D. H. Zhang, J. Appl. Phys. 119, 143107 (2016).
http://dx.doi.org/10.1063/1.4945993
16.
W. J. Fan, M. F. Li, T. C. Chong, and J. B. Xia, J. Appl. Phys. 80, 3471 (1996).
http://dx.doi.org/10.1063/1.363217
17.
J. Minch, S. H. Park, T. Keating, and S. L. Chuang, IEEE J. Quantum Electron. 35, 771 (1999).
http://dx.doi.org/10.1109/3.760325
18.
S. L. Chuang, Physics of Photonic Devices ( Wiley, 2009).
19.
J. Chen, W. J. Fan, Q. Xu, X. W. Zhang, S. S. Li, and J. B. Xia, J. Appl. Phys. 105, 123705 (2009).
http://dx.doi.org/10.1063/1.3143025
20.
K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon et al., Phys. Rev. B 75, 045203 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045203
21.
G. A. Rozgonyi and M. B. Panish, Appl. Phys. Lett. 23, 533 (1973).
http://dx.doi.org/10.1063/1.1654738
22.
N. Tansu and L. J. Mawst, IEEE Photonics Technol. Lett. 14, 444 (2002).
http://dx.doi.org/10.1109/68.992572
23.
M. Kawaguchi, T. Miyamoto, A. Saitoh, and F. Koyama, Jpn. J. Appl. Phys. 43, L267 (2004).
http://dx.doi.org/10.1143/JJAP.43.L267
24.
R. S. Quimby, Photonics and Lasers: An Introduction ( Wiley-Interscience, New Jersey, 2006), Chap. 23, pp. 425434.
25.
H. Riane, F. Hamdache, S. Bahlouli, and N. Benharrats, Superlattices Microstruct. 40, 19 (2006).
http://dx.doi.org/10.1016/j.spmi.2006.01.004
26.
S. A. Anson, J. T. Olesberg, M. E. Flatt, T. C. Hasenberg, and T. F. Boggess, J. Appl. Phys. 86, 713 (1999).
http://dx.doi.org/10.1063/1.370793
27.
S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, Appl. Phys. Lett. 56, 913 (1990).
http://dx.doi.org/10.1063/1.103175
28.
L. Chiu and A. Yariv, IEEE J. Quantum Electron. 18, 1406 (1982).
http://dx.doi.org/10.1109/JQE.1982.1071437
29.
A. F. Phillips, S. J. Sweeney, A. R. Adams, and P. J. A. Thijs, IEEE J. Sel. Top. Quantum Electron. 5, 401 (1999).
http://dx.doi.org/10.1109/2944.788398
30.
S. Tomic, E. P. O'Reilly, R. Fehse, S. J. Sweeney, A. R. Adams, A. D. Andreev, S. A. Choulis, T. J. C. Hosea, and H. Riechert, IEEE J. Sel. Top. Quantum Electron. 9, 1228 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.819516
31.
W. J. Fan, S. F. Yoon, T. K. Ng, S. Z. Wang, W. K. Loke, R. Liu, and A. Wee, Appl. Phys. Lett. 80, 4136 (2002).
http://dx.doi.org/10.1063/1.1483913
32.
E. Young, S. Tixier, and T. Tiedje, J. Cryst. Growth 279, 316 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.02.045
33.
P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, Appl. Phys. Lett. 102, 242115 (2013).
http://dx.doi.org/10.1063/1.4811736
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4962214
Loading
/content/aip/journal/jap/120/9/10.1063/1.4962214
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4962214
2016-09-07
2016-09-30

Abstract

Dilute nitride bismide GaNBiAs is a potential semiconductor alloy for near- and mid-infrared applications, particularly in 1.55 m optical communication systems. Incorporating dilute amounts of bismuth (Bi) into GaAs reduces the effective bandgap rapidly, while significantly increasing the spin-orbit-splitting energy. Additional incorporation of dilute amounts of nitrogen (N) helps to attain lattice matching with GaAs, while providing a route for flexible bandgap tuning. Here we present a study of the electronic bandstructure and optical gain of the lattice matched GaN Bi /GaAs quaternary alloy quantum well (QW) based on the 16-band model. We have taken into consideration the interactions between the N and Bi impurity states with the host material based on the band anticrossing and valence band anticrossing model. The optical gain calculation is based on the density matrix theory. We have considered different lattice matched GaNBiAs QW cases and studied their energy dispersion curves, optical gain spectrum, maximum optical gain, and differential gain and compared their performances based on these factors. The thickness and composition of these QWs were varied in order to keep the emission peak fixed at 1.55 m. The well thickness has an effect on the spectral width of the gain curves. On the other hand, a variation in the injection carrier density has different effects on the maximum gain and differential gain of QWs of varying thicknesses. Among the cases studied, we found that the 6.3 nm thick GaN lattice matched QW was most suited for 1.55 m (0.8 eV) GaAs-based photonic applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4962214.html;jsessionid=1Ynz3gCP2jMrvz-FxIhmB4Od.x-aip-live-06?itemId=/content/aip/journal/jap/120/9/10.1063/1.4962214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4962214&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4962214'
Right1,Right2,Right3,