Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. J. Sweeney and S. R. Jin, J. Appl. Phys. 113, 043110 (2013).
W. J. Fan, J. Appl. Phys. 113, 083102 (2013).
S. Imhof, C. Bckers, A. Thrnhardt, J. Hader, J. V. Moloney, and S. W. Koch, Semicond. Sci. Technol. 23, 125009 (2008).
S. J. Sweeney, Z. Batool, K. Hild, S. R. Jin, and T. J. C. Hosea, in 2011 13th International Conference on Transparent Optical Networks (2011), pp. 14.
M. Su, C. Li, P. Yuan, F. Rao, Y. Jia, and F. Wang, Opt. Express 22, 30633 (2014).
M. Usman, C. A. Broderick, and E. P. OReilly, AIP Conf. Proc. 1566, 21 (2013).
Z.-G. Song, S. Bose, W.-J. Fan, and S.-S. Li, J. Appl. Phys. 119, 143103 (2016).
C. A. Broderick, P. E. Harnedy, and E. P. OReilly, IEEE J. Sel. Top. Quantum Electron. 21, 287 (2015).
A. B. Nasr, M. Habchi, C. Bilel, A. Rebey, and B. E. Jani, J. Alloys Compd. 647, 159 (2015).
M. Gladysiewicz, R. Kudrawiec, and M. S. Wartak, J. Appl. Phys. 118, 055702 (2015).
C. A. Broderick, M. Usman, and E. P. O'Reilly, Semicond. Sci. Technol. 28, 125025 (2013).
H.-X. Deng, J. Li, S.-S. Li, H. Peng, J.-B. Xia, L.-W. Wang, and S.-H. Wei, Phys. Rev. B 82, 193204 (2010).
I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon, Phys. Rev. B 72, 115341 (2005).
S. Bose, Z. Song, W. J. Fan, and D. H. Zhang, J. Appl. Phys. 119, 143107 (2016).
W. J. Fan, M. F. Li, T. C. Chong, and J. B. Xia, J. Appl. Phys. 80, 3471 (1996).
J. Minch, S. H. Park, T. Keating, and S. L. Chuang, IEEE J. Quantum Electron. 35, 771 (1999).
S. L. Chuang, Physics of Photonic Devices ( Wiley, 2009).
J. Chen, W. J. Fan, Q. Xu, X. W. Zhang, S. S. Li, and J. B. Xia, J. Appl. Phys. 105, 123705 (2009).
K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon et al., Phys. Rev. B 75, 045203 (2007).
G. A. Rozgonyi and M. B. Panish, Appl. Phys. Lett. 23, 533 (1973).
N. Tansu and L. J. Mawst, IEEE Photonics Technol. Lett. 14, 444 (2002).
M. Kawaguchi, T. Miyamoto, A. Saitoh, and F. Koyama, Jpn. J. Appl. Phys. 43, L267 (2004).
R. S. Quimby, Photonics and Lasers: An Introduction ( Wiley-Interscience, New Jersey, 2006), Chap. 23, pp. 425434.
H. Riane, F. Hamdache, S. Bahlouli, and N. Benharrats, Superlattices Microstruct. 40, 19 (2006).
S. A. Anson, J. T. Olesberg, M. E. Flatt, T. C. Hasenberg, and T. F. Boggess, J. Appl. Phys. 86, 713 (1999).
S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, Appl. Phys. Lett. 56, 913 (1990).
L. Chiu and A. Yariv, IEEE J. Quantum Electron. 18, 1406 (1982).
A. F. Phillips, S. J. Sweeney, A. R. Adams, and P. J. A. Thijs, IEEE J. Sel. Top. Quantum Electron. 5, 401 (1999).
S. Tomic, E. P. O'Reilly, R. Fehse, S. J. Sweeney, A. R. Adams, A. D. Andreev, S. A. Choulis, T. J. C. Hosea, and H. Riechert, IEEE J. Sel. Top. Quantum Electron. 9, 1228 (2003).
W. J. Fan, S. F. Yoon, T. K. Ng, S. Z. Wang, W. K. Loke, R. Liu, and A. Wee, Appl. Phys. Lett. 80, 4136 (2002).
E. Young, S. Tixier, and T. Tiedje, J. Cryst. Growth 279, 316 (2005).
P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, and K. Volz, Appl. Phys. Lett. 102, 242115 (2013).

Data & Media loading...


Article metrics loading...



Dilute nitride bismide GaNBiAs is a potential semiconductor alloy for near- and mid-infrared applications, particularly in 1.55 m optical communication systems. Incorporating dilute amounts of bismuth (Bi) into GaAs reduces the effective bandgap rapidly, while significantly increasing the spin-orbit-splitting energy. Additional incorporation of dilute amounts of nitrogen (N) helps to attain lattice matching with GaAs, while providing a route for flexible bandgap tuning. Here we present a study of the electronic bandstructure and optical gain of the lattice matched GaN Bi /GaAs quaternary alloy quantum well (QW) based on the 16-band model. We have taken into consideration the interactions between the N and Bi impurity states with the host material based on the band anticrossing and valence band anticrossing model. The optical gain calculation is based on the density matrix theory. We have considered different lattice matched GaNBiAs QW cases and studied their energy dispersion curves, optical gain spectrum, maximum optical gain, and differential gain and compared their performances based on these factors. The thickness and composition of these QWs were varied in order to keep the emission peak fixed at 1.55 m. The well thickness has an effect on the spectral width of the gain curves. On the other hand, a variation in the injection carrier density has different effects on the maximum gain and differential gain of QWs of varying thicknesses. Among the cases studied, we found that the 6.3 nm thick GaN lattice matched QW was most suited for 1.55 m (0.8 eV) GaAs-based photonic applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd