Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. J. Manfra, N. G. Weimann, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, S. Syed, H. L. Stormer, W. Pan, D. V. Lang, S. N. G. Chu, G. Kovach, A. M. Sergent, J. Caissie, K. M. Molvar, L. J. Mahoney, and R. J. Molnar, J. Appl. Phys. 92, 338 (2002).
D. C. Look and J. R. Sizelove, Appl. Phys. Lett. 79, 1133 (2001).
L. Bouguen, S. Contreras, A. B. Jouault, L. Konczewicz, J. Camassel, Y. Cordier, M. Azize, S. Chenot, and N. Baron, Appl. Phys. Lett. 92, 043504 (2008).
W. Shockley, Bell Syst. Tech. J. 30, 990 (1951).
W. E. Pinson and A. Bray, Phys. Rev. 136, A1449 (1964).
V. N. Sokolov, K. W. Kim, V. A. Kochelap, and D. L. Woolard, J. Appl. Phys. 96, 6492 (2004).
S. M. Komirenko, K. W. Kim, V. A. Kochelap, and D. L. Woolard, Phys. Rev. B 69, 233201 (2004).
E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J.-F. Millithaler, and L. Regiani, J. Phys.: Condens. Matter 20, 384209 (2008).
E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J.-F. Millithaler, and L. Regiani, Phys. Rev. B 76, 045333 (2007).
J. T. Lu and J. C. Cao, Semicond. Sci. Technol. 20, 829 (2005).
V. V. Korotyeyev, V. A. Kochelap, K. W. Kim, and D. L. Woolard, Appl. Phys. Lett. 82, 2643 (2003).
K. W. Kim, V. V. Korotyeyev, V. A. Kochelap, A. A. Klimov, and D. L. Woolard, J. Appl. Phys. 96, 6488 (2004).
G. I. Syngayivska and V. V. Korotyeyev, Semicond. Phys., Quantum Electron. Optoelectron. 10, 54 (2007).
G. I. Syngayivska and V. V. Korotyeyev, Ukr. J. Phys. 58, 40 (2013).
S. Fischer, C. Wetzel, E. E. Haller, and B. K. Meyer, Appl. Phys. Lett. 67, 1298 (1995).
I. I. Vosilius and I. B. Levinson, JETP 23, 1104 (1966).
I. I. Vosilius and I. B. Levinson, JETP 25, 672 (1967).
S. Komiyama, T. Masumi, and K. Kajita, Solid State Commun. 31, 447 (1979).
S. Komiyama, Phys. Rev. Lett. 48, 271 (1982).
V. A. Valov, V. A. Kozlov, L. S. Mazov, and I. M. Nefedov, “ Anisotropic and inverted hot carrier distributions in n-InSb, n-GaAs and p-Ge in crossed E- and H-fields,” in Inverted Distributions of Hot Electrons in Semiconductors, edited by A. A. Andronov and Y. K. Pozela ( Institute of Applied Physics of the RAS, Gorki, 1983), pp. 1755.
E. M. Gershenzon, L. B. Litvak-Gorskaya, R. I. Rabinovich, and E. Z. Shapiro, JETP 63, 142 (1986).
A. D. Boardmann, W. Fawcett, and J. G. Ruch, Phys. Status Solidi (a) 4, 133 (1971).
C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).
E. Matioli and T. Palacios, Nano Lett. 15, 1070 (2015).

Data & Media loading...


Article metrics loading...



Low-temperature high-field electron transport is studied for compensated bulk GaN subjected to crossed electric and magnetic fields. The electron kinetics, distribution function, and field dependencies of the magneto transport characteristics are analyzed by using the Monte-Carlo method. At zero magnetic field, for an ionized impurity concentration of 1016 cm−3 and an electron concentration of 1015 cm−3, it is shown that dissipative streaming transport with a strong anisotropic electron distribution in the momentum space is realized at electric fields in the range kV/cm and for a lattice temperature of 30 K. The magnetic field destroys the dissipative streaming transport. Indeed, for a magnetic field greater than 4 T, the electrons are predominantly confined in a region of the momentum space where their energy is smaller than the optical phonon energy and the strong inelastic scattering by optical phonons is practically eliminated. A quasi-ballistic electron transport occurs in the form of a vortex-like motion in the momentum space. The axis of rotation of this vortex coincides with the average electron momentum. A general analysis of the distribution function suitable for any configuration of the Hall circuit is presented. The main magneto transport characteristics (dissipative current, Hall current, and Hall electric field) are studied for the short and open Hall circuits. We show that the magneto transport measurements can provide valuable information on the main features of the electron distribution function and electron dynamics in GaN. Finally, we suggest that the strong dependency of the dissipative current on the parameters of the Hall circuit can be used for current modulation and current switching.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd