Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4962282
1.
W. Shan, T. J. Schmidt, X. H. Xang, S. J. Hwang, J. J. Song, and B. Goldenberg, Appl. Phys. Lett. 66, 985 (1995).
http://dx.doi.org/10.1063/1.113820
2.
B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, Phys. Status Solidi B 245, 1723 (2008).
http://dx.doi.org/10.1002/pssb.200844059
3.
W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, J. Appl. Phys. 44, 292 (1973).
http://dx.doi.org/10.1063/1.1661876
4.
H. Hirayama, Proc. SPIE 7989, 79870G (2011).
5.
A. Khan, in Conference on Lasers and Electro-Optics, San Jose, California, USA, May 16-21, 2010.
6.
K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 84, 5264 (2004).
http://dx.doi.org/10.1063/1.1765208
7.
H. Morkoç, Nitride Semiconductors and Devices: Fundamentals and Applications ( Weinheim, Wiley-VCH, 2013).
8.
L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, IEEE Electron Device Lett. 22, 457 (2001).
http://dx.doi.org/10.1109/55.954910
9.
X.-D. Wang, W.-D. Hu, X.-S. Chen, and W. Lu, IEEE Trans. Electron Devices 59, 1393 (2012).
http://dx.doi.org/10.1109/TED.2012.2188634
10.
U. K. Mishra, L. Shen, T. E. Kazior, and Y.-F. Wu, Proc. IEEE 96, 287 (2008).
http://dx.doi.org/10.1109/JPROC.2007.911060
11.
S. Masui, T. Yamamoto, and S. Nagahama, Electron. Commun. Jpn. 98, 23 (2015).
http://dx.doi.org/10.1002/ecj.11671
12.
M. Daniels, O. Mehl, and U. Hartwig, Proc. SPIE 9578, 95780N (2015).
http://dx.doi.org/10.1117/12.2187412
13.
Z. Lochner, T.-T. Kao, Y.-S. Liu, X.-H. Li, M. M. Satter, S.-C. Shen, P. D. Yoder, J.-H. Ryou, R. D. Dupuis, Y. Wei, H. Xie, A. Fischer, and F. A. Ponce, Appl. Phys Lett. 102, 101110 (2013).
http://dx.doi.org/10.1063/1.4795719
14.
J. Cho, E. F. Schubert, and J. K. Kim, Laser Photonics Rev. 7, 408 (2013).
http://dx.doi.org/10.1002/lpor.201200025
15.
P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, and E. R. Weber, J. Appl. Phys. 85, 2385 (1999).
http://dx.doi.org/10.1063/1.369554
16.
W. Shan, T. J. Schmidt, R. J. Hauenstein, J. J. Song, and B. Goldenberg, Appl. Phys. Lett. 66, 3492 (1995).
http://dx.doi.org/10.1063/1.113774
17.
P. Perlin, I. Gorczyca, T. Suski, P. Wisniewski, S. Lepkowski, N. E. Christensen, A. Svane, M. Hansen, S. P. DenBaars, D. Damilano, N. Grandjean, and J. Massies, Phys. Rev. B 64, 115319 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.115319
18.
S. X. Li, J. Wu, E. E. Haller, W. Walukiewicz, W. Shan, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 83, 4963 (2003).
http://dx.doi.org/10.1063/1.1633681
19.
G. Franssen, T. Suski, P. Perlin, H. Teisseyre, A. Khachapuridze, L. H. Dmowski, J. A. Plesiewicz, A. Kaminska, M. Kurouchi, Y. Nanishi, H. Lu, and W. Schaff, Appl. Phys. Lett. 89, 121915 (2006).
http://dx.doi.org/10.1063/1.2356994
20.
T. Suski, G. Franssen, H. Teisseyre, A. Khachapuridze, L. H. Dmowski, J. A. Plesiewicz, A. Kaminska, H. Lu, and W. Schaff, Phys. Status Solidi B 244, 38 (2007).
http://dx.doi.org/10.1002/pssb.200672504
21.
A. Kaminska, G. Franssen, T. Suski, I. Gorczyca, N. E. Christensen, A. Svane, A. Suchocki, H. Lu, W. J. Schaff, E. Dimakis, and A. Georgakilas, Phys. Rev. B 76, 075203 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075203
22.
S.-H. Wei and A. Zunger, Phys. Rev. B 60, 5404 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.5404
23.
H. Akamaru, A. Onodera, T. Endo, and O. Mishima, J. Phys. Chem. Solids 63, 887 (2002).
http://dx.doi.org/10.1016/S0022-3697(01)00244-X
24.
Q. Yan, P. Rinke, M. Scheffler, and C. G. Van de Walle, Appl. Phys. Lett. 95, 121111 (2009);
http://dx.doi.org/10.1063/1.3236533
Q. Yan, P. Rinke, M. Scheffler, and C. G. Van de Walle, Appl. Phys. Lett. 97, 181102 (2010).
http://dx.doi.org/10.1063/1.3507289
25.
Z. X. Liu, K. P. Korona, K. Syassen, J. Kuhl, K. Pakula, J. M. Baranowski, I. Grzegory, and S. Porowski, Solid State Commun. 108, 433 (1998).
http://dx.doi.org/10.1016/S0038-1098(98)00381-0
26.
P. Strak, K. Sakowski, A. Kaminska, and S. Krukowski, J. Phys. Chem. Solids 93, 100 (2016).
http://dx.doi.org/10.1016/j.jpcs.2016.02.014
27.
S. P. Łepkowski, H. Teisseyre, T. Suski, P. Perlin, N. Grandjean, and J. Massies, Appl. Phys. Lett. 79, 1483 (2001).
http://dx.doi.org/10.1063/1.1396631
28.
H. Teisseyre, T. Suski, S. P. Łepkowski, S. Anceau, P. Perlin, P. Lefebvre, L. Kończewicz, H. Hirayama, and Y. Aoyagi, Appl. Phys. Lett. 82, 1541 (2003).
http://dx.doi.org/10.1063/1.1559948
29.
S. Anceau, P. Lefebvre, T. Suski, S. P. Lepkowski, H. Teisseyre, L. H. Dmowski, L. Konczewicz, A. Kaminska, A. Suchocki, H. Hirayama, and Y. Aoyagi, Phys. Status Solidi A 201, 190 (2004).
http://dx.doi.org/10.1002/pssa.200303980
30.
G. Franssen, A. Kaminska, T. Suski, A. Suchocki, K. Kazlauskas, G. Tamulaitis, A. Zukauskas, R. Czarnecki, H. Teisseyre, P. Perlin, M. Leszczynski, M. Boćkowski, I. Grzegory, and N. Grandjean, Phys. Status Solidi B 241, 3285 (2004).
http://dx.doi.org/10.1002/pssb.200405208
31.
T. Suski, G. Franssen, P. Perlin, H. Teisseyre, and A. Kaminska, Proc. SPIE 6121, 612100 (2006).
32.
G. Franssen, T. Suski, P. Perlin, R. Bohdan, W. Trzeciakowski, H. Teisseyre, A. Khachapuridze, G. Targowski, K. Krowicki, R. Czarnecki, M. Leszczynski, M. Kurouchi, Y. Nanishi, H. Lu, and W. Schaff, Phys. Status Solidi B 244, 32 (2007).
http://dx.doi.org/10.1002/pssb.200672503
33.
G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kaminska, E. Feltin, and N. Grandjean, Appl. Phys. Lett. 92, 201901 (2008).
http://dx.doi.org/10.1063/1.2929382
34.
H. Teisseyre, A. Kaminska, G. Franssen, A. Dussaigne, N. Grandjean, I. Grzegory, B. Lucznik, and T. Suski, J. Appl. Phys. 105, 063104 (2009).
http://dx.doi.org/10.1063/1.3043888
35.
I. Gorczyca, T. Suski, A. Kaminska, G. Staszczak, H. P. D. Schenk, N. Christensen, and A. Svane, Phys. Status Solidi A 207, 1369 (2010).
http://dx.doi.org/10.1002/pssa.200983491
36.
P. K. Kandaswamy, F. Guillot, E. Bellet-Amalric, E. Monroy, L. Nevou, M. Tchernycheva, A. Michon, F. H. Julien, E. Baumann, F. R. Giorgetta, D. Hofstetter, T. Remmele, M. Albrecht, S. Birner, and L. S. Dang, J. Appl. Phys. 104, 093501 (2008).
http://dx.doi.org/10.1063/1.3003507
37.
Y. Kotsar, B. Doisneau, E. Bellet-Amalric, A. Das, E. Sarigiannidou, and E. Monroy, J. Appl. Phys. 110, 033501 (2011).
http://dx.doi.org/10.1063/1.3618680
38.
S. Sakr, Y. Kotsar, M. Tchernycheva, E. Warde, N. Isac, E. Monroy, and F. H. Julien, Appl. Phys. Express 5, 052203 (2012).
http://dx.doi.org/10.1143/APEX.5.052203
39.
M. Beeler, E. Trichas, and E. Monroy, Semicond. Sci. Technol. 28, 074022 (2013).
http://dx.doi.org/10.1088/0268-1242/28/7/074022
40.
A. Kaminska, P. Strak, J. Borysiuk, K. Sobczak, J. Z. Domagala, M. Beeler, E. Grzanka, K. Sakowski, S. Krukowski, and E. Monroy, J. Appl. Phys. 119, 015703 (2016).
http://dx.doi.org/10.1063/1.4939595
41.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
42.
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
43.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
44.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
45.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
46.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
47.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
48.
M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, S. Porowski, and T. D. Moustakas, J. Appl. Phys. 76, 4909 (1994);
http://dx.doi.org/10.1063/1.357273
M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J. M. Baranowski, C. T. Foxon, and T. S. Cheng, Appl. Phys. Lett. 69, 73 (1996).
http://dx.doi.org/10.1063/1.118123
49.
H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Höpler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch, and H.-J. Körner, Appl. Phys. Lett. 71, 1504 (1997).
http://dx.doi.org/10.1063/1.119949
50.
L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
51.
G. Moses and C. G. Van de Walle, Appl. Phys. Lett. 96, 021908 (2010).
http://dx.doi.org/10.1063/1.3291055
52.
L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78, 125116 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125116
53.
M. Ribeiro, L. R. C. Fonseca, and L. G. Ferreira, Phys. Rev. B 79, 241312 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.241312
54.
E. Silveira, J. A. Freitas, S. B. Schujman, and L. J. Schowalter, J. Cryst. Growth 310, 4007 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.06.015
55.
B. Monemar, J. P. Bergman, I. A. Buyanova, H. Amano, I. Akasaki, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Solid State Electron. 41, 239 (1997).
http://dx.doi.org/10.1016/S0038-1101(96)00208-0
56.
Y. C. Yeo, T. C. Chong, and M. F. Li, J. Appl. Phys. 83, 1429 (1998).
http://dx.doi.org/10.1063/1.366847
57.
J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter, Phys. Rev. B 57, R9435 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R9435
58.
P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies, Appl. Phys. Lett. 78, 1252 (2001).
http://dx.doi.org/10.1063/1.1351517
59.
J. Binder, K. P. Korona, A. Wysmołek, M. Kamińska, K. Köhler, L. Kirste, O. Ambacher, M. Zając, and R. Dwiliński, J. Appl. Phys. 114, 223504 (2013).
http://dx.doi.org/10.1063/1.4845715
60.
J. Borysiuk, K. Sakowski, P. Drozdz, K. P. Korona, K. Sobczak, G. Muziol, C. Skierbiszewski, A. Kaminska, and S. Krukowski, J. Appl. Phys. (submitted).
61.
P. Perlin, T. Suski, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Bogusławski, J. Bernholc, J. C. Chervin, A. Polian, and T. D. Moustakas, Phys. Rev. Lett. 75, 296 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.296
62.
C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
63.
P. Bogusławski, E. L. Briggs, and J. Bernholc, Phys. Rev. B 51, 17255 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.17255
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4962282
Loading
/content/aip/journal/jap/120/9/10.1063/1.4962282
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4962282
2016-09-07
2016-09-27

Abstract

High-pressure and time-resolved studies of the optical emission from n-type doped GaN/AlN multi-quantum-wells (MQWs) with various well thicknesses are analysed in comparison with calculations of the electronic (band structure, density of states) and optical (emission energies and their pressure derivatives, oscillator strength) properties. The optical properties of GaN/AlN MQWs are strongly affected by quantum confinement and polarization-induced electric fields. Thus, the photoluminescence (PL) peak energy decreases by over 1 eV with quantum well (QW) thicknesses increasing from 1 to 6 nm. Furthermore, the respective PL decay times increased from about 1 ns up to 10 μs, due to the strong built-in electric field. It was also shown that the band gap pressure coefficients are significantly reduced in MQWs as compared to bulk AlN and GaN crystals. Such coefficients are strongly dependent on the geometric factors such as the thickness of the wells and barriers. The transition energies, their oscillator strength, and pressure dependence are modeled for tetragonally strained structures of the same geometry using a full tensorial representation of the strain in the MQWs under external pressure. These MQWs were simulated directly using density functional theory calculations, taking into account two different systems: the semi-insulating QWs and the n-doped QWs with the same charge density as in the experimental samples. Such an approach allowed an assessment of the impact of n-type doping on optical properties of GaN/AlN MQWs. We find a good agreement between these two approaches and between theory and experimental results. We can therefore confirm that the nonlinear effects induced by the tetragonal strain related to the lattice mismatch between the substrates and the polar MQWs are responsible for the drastic decrease of the pressure coefficients observed experimentally.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4962282.html;jsessionid=L1KziltJfJfrC_3rxJWIefA1.x-aip-live-02?itemId=/content/aip/journal/jap/120/9/10.1063/1.4962282&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4962282&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4962282'
Right1,Right2,Right3,