Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/53/10/10.1063/1.331665
1.
1.H. Welker, Z. Naturforsch. A 7, 744 (1952).
2.
2.C. Hilsum and A. C. Rose‐Innes, Semiconducting III‐V Compounds (Pergamon, Oxford, 1961).
3.
3.O. Madelung, Physics of III‐V Compounds (Wiley, New York, 1964).
4.
4.M. Neuberger, III‐V Semiconducting Compounds (IFI/Plenum, New York, 1971).
5.
5.A. N. Goryunova, The Chemistry of Diamond‐Like Semiconductors, edited by J. C. Anderson (MIT, Cambridge, 1965).
6.
6.H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction LEDs (Academic, New York, 1977).
7.
7.H. C. Casey and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), in two parts: Part A: Fundamental Principles and Part B: Materials and Operating Characteristics.
8.
8.C. Hilsum, in Progress in Semiconductors, Vol. 9, edited by A. F. Gibson and R. E. Burgess (Heywood, London, 1965), p. 135.
9.
9.Gallium Arsenide and Related Compounds (Institute of Physics, London). Volumes in Inst. of Physics Conference Series: relevant volumes are No. 3 (1967), No. 7 (1969), No. 9 (1971), No. 17 (1973), No. 24 (1975), Nos. 33a and 33b (1977), No. 45 (1979), and No. 56 (1981).
10.
10.Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York), from Vol. 1 (1965) onwards.
11.
11.G. E. Stillman, D. M. Larsen, C. M. Wolfe, and R. C. Brandt, Solid State Commun. 9, 2245 (1971).
12.
12.G. E. Stillman, C. M. Wolfe, and D. M. Korn, Proceedings of the 13th International Conference on Physics of Semiconductors, Rome 1976, edited by F. G. Fumi (North‐Holland, Amsterdam, 1976), p. 623.
13.
13.A. G. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973).
14.
14.A. G. Milnes, in Electronics and Electron Physics (Academic, New York) (in press).
15.
15.Gallium Arsenide, Vol. 20 of Ref. 10 (to be published).
16.
16.G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980).
17.
17.Y. P. Varshni, Phys. Status Solidi 19, 459 (1967);
17.Y. P. Varshni, 20, 9 (1967)., Phys. Status Solidi
18.
18.W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).
19.
19.H. C. Casey and F. Stern, J. Appl. Phys. 47, 631 (1976).
20.
20.M. Gershenzon, in Ref. 10, Vol. 2 (1966), p. 289.
21.
21.P. T. Landsberg and M. J. Adams, J. Lumin. 7, 3 (1973).
22.
22.P. T. Landsberg, Phys. Status Solidi 41, 457 (1970).
23.
23.G. C. Osbourn and D. L. Smith, Phys. Rev. B 20, 1556 (1979).
24.
24.G. Benz and R. Conradt, Phys. Rev. B 16, 843 (1977).
25.
25.L. Jastrzebski, J. Lagowski, H. C. Gatos, and W. Walukiewicz, in Gallium Arsenide and Related Compounds 1978, edited by C. M. Wolfe, Inst. Phys. Conf. Ser. No. 45 (1979), p. 437.
26.
26.M. Ettenberg, H. Kressel, and S. L. Gilbert, J. Appl. Phys. 44, 827 (1973).
27.
27.H. C. Casey, B. I. Miller, and E. Pinkas, J. Appl. Phys. 44, 1281 (1973).
28.
28.V. M. Goldschmidt, Trans. Faraday Soc. 25, 253 (1929).
29.
29.M. E. Straumanis and C. D. Kim, Acta Crystallogr. 19, 256 (1965).
30.
30.E. D. Pierron, D. L. Parker, and J. B. McNeely, Acta Crystallogr. 21, 290 (1966).
31.
31.C. M. H. Driscoll, A. F. W. Willoughby, J. B. Mullin, and B. W. Straughan, in Ref. 9, No. 24 (1975), p. 275.
32.
32.W. Köster and B. Thoma, Z. Metall. 46, 291 (1955).
33.
33.J. van den Boomgaard and K. Schol, Philips Res. Rep. 12, 127 (1957).
34.
34.N. N. Sirota, in Ref. 10, Vol. 4 (1968), p. 35.
35.
35.J. C. Phillips, Bonds and Bands in Semiconductors (Academic, New York, 1973).
36.
36.Phillips (Ref. 35) used the symbol to denote the ionicity fraction of a mixed bond. For the sphalerite III‐V binary compounds, he reported values for ranging from a low of 0.25 for AlSb to a high of 0.42 for InP.
37.
37.This asymmetry comes about since the GaAs primitive basis consists of two chemically different atoms. Thus the lattice does not have inversion symmetry.
38.
38.S. Iida and K. Ito, J. Electrochem. Soc. 118, 768 (1971).
39.
39.W. Kern, RCA Rev. 39, 278 (1978).
40.
40.L. Brillouin, Wave Propagation in Periodic Structures (Dover, New York, 1953), 2nd edition.
41.
41.N. A. Goryunova, A. S. Borshchevskii, and D. N. Tretiakov, in Ref. 10, Vol. 4 (1968), p. 3.
42.
42.G. A. Wolff, L. Tolman, N. J. Field, and J. C. Clark, in Semiconductors and Phosphors, edited by M. Schön and H. Welker (Wiley‐Interscience, New York, 1958), p. 463.
43.
43.T. B. Bateman, H. J. McSkimin, and J. M. Whelan, J. Appl. Phys. 30, 544 (1959).
44.
44.H. J. McSkimin, A. Jayaraman, and P. Andreatch, J. Appl. Phys. 38, 2362 (1967).
45.
45.C. W. Garland and K. C. Park, J. Appl. Phys. 33, 759 (1962).
46.
46.J. R. Drabble and A. J. Brammer, Solid State Commun. 4, 467 (1966).
47.
47.J. R. Drabble, in Ref. 10, Vol. 2 (1966), p. 75.
48.
48.H. J. McSkimin and P. Andreatch, J. Appl. Phys. 38, 2610 (1967).
49.
49.R. W. Keyes, in Ref. 10, Vol. 4 (1968), p. 327.
50.
50.J. R. Macdonald, Rev. Mod. Phys. 41, 316 (1969).
51.
51.J. de Launay, in Solid State Physics, Vol. 2, edited by F. Seitz and D. Turnbull, (Academic, New York, 1956), p. 219.
52.
52.The electric field generated by a sound wave in piezoelectric GaAs that was also semi‐insulating would affect the wave speed. Thus speed of sound measurements to determine the second‐order moduli must use conducting GaAs—preferably lightly doped. That was the case for the work of Refs. 43–46 and 48. See Drabble (Ref. 47) for a discussion of the more complicated set of small‐stress elastic parameters when piezoelectric coupling is significant.
53.
53.J. H. Weiner, Phys. Rev. B 24, 845 (1981).
54.
54.T. C. Cetas, C. R. Tilford, and C. A. Swenson, Phys. Rev. 174, 835 (1968).
55.
55.J. C. Holste, Phys. Rev. B 6, 2495 (1972).
56.
56.R. S. Crandall, Solid State Commun. 7, 1109 (1969).
57.
57.V. Narayanamurti, R. A. Logan, and M. A. Chin, Phys. Rev. Lett. 40, 63 (1978).
57.See also, V. Narayanamurti in Phonon Scattering in Condensed Matter, edited by H. J. Maris (Plenum, New York, 1980), p. 385.
58.
58.J. L. T. Waugh and G. Dolling, Phys. Rev. 132, 2410 (1963).
59.
59.W. Cochran, Proc. R. Soc. London A 253, 260 (1959).
60.
60.G. Dolling and R. A. Cowley, Proc. Phys. Soc. London 88, 463 (1966).
61.
61.R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).
62.
62.R. N. Hall, J. Electrochem. Soc. 110, 385 (1963).
63.
63.D. Richman, J. Phys. Chem. Solids 24, 1131 (1963).
64.
64.B. D. Lichter and P. Sommelet, Trans. Metal. Soc. AIME 245, 1021 (1969).
65.
65.A. Jayaraman, W. Klement, and G. C. Kennedy, Phys. Rev. 130, 540 (1963).
66.
66.W. Klemm, H. Spitzer, W. Lindenberg, and H. J. Junker, Monatsch. Chem. 83, 629 (1952).
67.
67.N. P. Mokrovskii and A. R. Regel, Zh. Tekh. Fiz. 22, 1281 (1952).
68.
68.A. F. Ioffe, Physics of Semiconductors (Academic, New York, 1960), p. 400.
69.
69.C. D. Thurmond, J. Phys. Chem. Solids 26, 785 (1965).
70.
70.L. J. Vieland, Acta Metall. 11, 137 (1963).
71.
71.J. R. Arthur, J. Phys. Chem. Solids 28, 2257 (1967).
72.
72.M. B. Panish, J. Cryst. Growth 27, 6 (1974).
73.
73.M. Ilegems and G. L. Pearson, in Ref. 9, No. 7 (1969), p. 3.
74.
74.J. J. Hsieh, J. Cryst. Growth 27, 49 (1974).
75.
75.H. Kressel, J. Electron. Mater. 3, 747 (1974).
76.
76.C. J. Nuese, J. Electron. Mater. 6, 253 (1977).
77.
77.J. Drowart and P. Goldfinger, J. Chim. Phys. 55, 721 (1958).
78.
78.H. Gutbier, Z. Naturforsch. A 16, 268 (1961).
79.
79.V. J. Lyons and V. J. Silvestri, J. Phys. Chem. 65, 1275 (1961).
80.
80.S. I. Novikova, in Ref. 10, Vol. 2 (1966), p. 33.
81.
81.S. I. Novikova, Sov. Phys. Solid State 3, 129 (1961).
82.
82.M. Blackman, Philos. Mag. 3, 831 (1958).
83.
83.W. B. Daniels, Phys. Rev. Lett. 8, 3 (1962).
84.
84.P. W. Sparks and C. A. Swenson, Phys. Rev. 163, 779 (1967).
85.
85.T. F. Smith and G. K. White, J. Phys. C 8, 2031 (1975).
86.
86.H. Welker and H. Weiss, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1956), Vol. 3, p. 1.
87.
87.J. A. Amick, RCA Rev. 24, 555 (1963).
88.
88.S. Nan and L. Yihuan, Sci. Sin. 14, 1582 (1965).
89.
89.L. Bernstein and R. J. Beals, J. Appl. Phys. 32, 122 (1961).
90.
90.R. Feder and T. Light, J. Appl. Phys. 39, 4870 (1968).
91.
91.Thermophysical Properties of Matter, edited by Y. S. Touloukian and E. H. Buyco (Plenum, New York, 1976), Vol. 13 (“Thermal Expansion”), p. 747.
92.
92.U. Piesbergen, Z. Naturforsch. A 18, 141 (1963).
93.
93.U. Piesbergen, in Ref. 10, Vol. 2 (1966), p. 49.
94.
94.See for example, E. S. R. Gopal, Specific Heats at Low Temperatures (Plenum, New York, 1966).
95.
95.C. Marucha, J. Mucha, and J. Rafalowicz, Phys. Status Solidi A 31, 269 (1975).
96.
96.Effects first explained by B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 23, 416 (1969), in terms of elastic moduli anisotropy. That explanation was not, at that time, for GaAs itself, but for solids such as germanium with a similar value for the ratio
97.
97.M. Lax and V. Narayanamurti, in Phonon Scattering in Condensed Matter, edited by H. J. Maris (Plenum, New York, 1980), p. 337.
98.
98.P. L. Vuillermoz, A. Laugier, and P. Pinard, Phys. Status Solidi B 63, 271 (1974).
99.
99.P. L. Vuillermoz, A. Laugier, and P. Pinard, Solid State Commun. 15, 1075 (1974).
100.
100.L. J. Challis and A. Ramdane, in Ref. 97, p. 121.
101.
101.P. Bury, L. J. Challis, P. J. King, D. J. Monk, A. Ramdane, V. W. Rampton, and P. Wiscome, in Semi‐Insulating III‐V Materials, edited by G. J. Rees (Shiva, Orpington, 1980), p. 214.
102.
102.J. R. Drabble and H. J. Goldsmid, Thermal Conduction in Semiconductors (Pergamon, Oxford, 1961).
103.
103.M. G. Holland, Phys. Rev. 134, A471 (1964).
104.
104.M. G. Holland, in Proceedings of the 7th International Conference on Physics of Semiconductors, Paris 1964, edited by M. Hulin(Dunod, Paris, 1964), p. 713.
105.
105.R. O. Carlson, G. A. Slack, and S. J. Silverman, J. Appl. Phys. 36, 505 (1965).
106.
106.A. Amith, I. Kudman, and E. F. Steigmeier, Phys. Rev. 138, A1270 (1965).
107.
107.M. G. Holland, in Ref. 10, Vol. 2 (1966), p. 3.
108.
108.R. Berman, Thermal Conduction in Solids (Oxford, New York, 1976).
109.
109.G. A. Slack, in Ref. 51, Vol. 34 (1979), p. 1.
110.
110.L. Genzel, Z. Phys. 135, 177 (1953).
111.
111.E. F. Steigmeier and B. Abeles, Phys. Rev. 136, A1149 (1964).
112.
112.I. Pomeranchuk, J. Phys. USSR 4, 259 (1941);
112.I. Pomeranchuk, Phys. Rev. 60, 820 (1941).
113.
113.P. G. Clemens and D. J. Ecsedy, Proceedings of the 2nd International Conference on Phonon Scattering in Solids (Plenum, New York, 1975), p. 367.
114.
114.Yu. A. Logachev and L. N. Vasil’ev, Sov. Phys. Solid State 15, 1081 (1973).
115.
115.J. Callaway, Phys. Rev. 113, 1046 (1959).
116.
116.H. B. G. Casimir, Physica 5, 495 (1938).
117.
117.M. D. Tiwari, D. N. Talwar, and B. K. Agarwal, Solid State Commun. 9, 995 (1971).
118.
118.R. E. Peierls, Ann. Phys. 3, 1055 (1929);
118.see also R. E. Peierls, Quantum Theory of Solids (Oxford, New York, 1955), p. 45.
119.
119.Carlson et al. (Ref. 105) had used single‐crystal samples with transverse dimensions Thus Casimir (boundary) scattering at a sample’s side faces would limit to no more than The upper limit in Fig. 19 suggests that there might also have been some defect/impurity scattering; but clearly not much, if any, for this purest sample.
120.
120.N. Chaudhari, R. S. Wadha, P. Tiku, and A. K. Sreedhar, Phys. Rev. B 8, 4668 (1973).
121.
121.C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058 (1964).
122.
122.J. S. Blakemore, J. Appl. Phys. 53, 520 (1982).
123.
123.See Vol. 10 (1967) of Ref. 10. This contains ten chapters (contributed among 17 authors) on various optical properties.
124.
124.A. Mooradian and G. B. Wright, Solid State Commun. 4, 431 (1966).
125.
125.A. Mooradian and A. L. McWhorter, Phys. Rev. Lett. 19, 849 (1967).
126.
126.W. D. Johnston and I. P. Kammow, Phys. Rev. 188, 1209 (1969).
127.
127.F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, Phys. Rev. B 5, 580 (1972).
128.
128.A. Pinczuk, S. G. Louie, B. Welber, J. C. Tsang, and J. A. Bradley, in Proceedings of the 14th International Conference on Physics of Semiconductors, edited by B. L. H. Wilson, Inst. Phys. Conf. Ser. No. 43 (IOP, London, 1979), p. 1191.
129.
129.W. Richter, in Springer Tracts in Modern Physics, Vol. 78 (Springer, New York, 1976), p. 121.
130.
130.R. Trommer, E. Anastassakis, and M. Cardona, in Proceedings of the 3rd International Conference on Light Scattering in Solids (Wiley, New York, 1976), p. 396.
131.
131.D. K. Garrod and R. Bray, Phys. Rev. B 6, 1314 (1972).
132.
132.R. G. Ulbrich and C. Weisbuch, Phys. Rev. Lett. 38, 865 (1977).
133.
133.M. Cardona, Modulation Spectroscopy (Academic, New York, 1969).
134.
134.See Vol. 9 (1972) of Ref. 10. This volume comprises six chapters on various aspects of optical modulation spectroscopy, with data for GaAs among other semiconductors. These chapters concern: electroreflectance (B. O. Seraphin, p. 1), interband magnetooptics (R. L. Aggarwal, p. 151), electroabsorption (D. F. Blossey and P. Handler, p. 257), temperature and wavelength modulation (B. Batz, p. 315), piezo‐optical effects (I. Balslev, p. 403), and the theory underlying electric field modulation phenomena (D. E. Aspnes and N. Bottka, p. 457).
135.
135.R. R. L. Zucca, J. P. Walter, Y. R. Shen, and M. L. Cohen, Solid State Commun. 8, 627 (1970);
135.Zucca and Shen, Phys. Rev. B 1, 2668 (1970).
136.
136.T. Balslev, Phys. Rev. 177, 1173 (1969).
137.
137.I. Balslev, Solid State Commun. 5, 315 (1967).
138.
138.J. E. Wells and P. Handler, Phys. Rev. B 3, 1315 (1971).
139.
139.E. Matatagui, A. G. Thompson, and M. Cardona, Phys. Rev. 176, 950 (1968).
140.
140.T. S. Moss, J. Appl. Phys. 32, 2136 (1961).
141.
141.E. G. S. Paige and H. D. Rees, Phys. Rev. Lett. 16, 444 (1966);
141.H. D. Rees, Solid State Commun. 5, 365 (1967).
142.
142.B. O. Seraphin, J. Appl. Phys. 37, 721 (1966);
142.B. O. Seraphin, Proc. Phys. Soc. London 87, 239 (1966).
142.See also Seraphin on p. 1 et seq. of Ref. 134.
143.
143.M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Rev. 154, 696 (1967).
144.
144.V. Rehn and D. S. Kyser, Phys. Rev. Lett. 18, 848 (1967);
144.V. Rehn and D. S. Kyser, 28, 494 (1972)., Phys. Rev. Lett.
145.
145.J. D. Axe and R. Hammer, Phys. Rev. 162, 700 (1967).
146.
146.S. G. Dzhioeva and V. B. Stopachinskii, Sov. Phys. Semicond. 3, 328 (1969).
147.
147.T. Nishino, M. Okuyama, and Y. Hamakawa, J. Phys. Chem. Solids 30, 2671 (1969).
148.
148.S. F. Pond and P. Handler, Phys. Rev. B 6, 2248 (1972);
148.B S. F. Pond and P. Handler, 8, 2869 (1973)., Phys. Rev. B
149.
149.D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605 (1973).
150.
150.D. E. Aspnes, C. G. Olson, and D. W. Lynch, Phys. Rev. B 12, 2527 (1975).
151.
151.D. E. Aspnes, C. G. Olson, and D. W. Lynch, Phys. Rev. Lett. 378, 766 (1976).
152.
152.D. E. Aspnes, Phys. Rev. B 14, 5331 (1976).
153.
153.F. H. Pollak and M. Cardona, Phys. Rev. 172, 816 (1968).
154.
154.Seraphin (in Ref. 134) attempted an ordering of GaAs bands from electroreflectance data, as also so did Pond and Handler (Ref. 148). Aspnes (Ref. 152) developed a comprehensive ordering scheme, based in part on Schottky barrier electroreflectance spectra (Ref. 151) involving transitions from Ga core levels using synchrotron radiation). These spectra had shown the band to be lower than the band among GaAs conduction bands. The band ordering scheme of Ref. 152 also took into account published data from other types of experiment, including photoemission.
155.
155.B. A. Weinstein and M. Cardona, Phys. Rev. B 5, 3120 (1972).
156.
156.A. Feldman and R. M. Waxier, J. Appl. Phys. 53, 1477 (1982).
157.
157.For a review of interband magneto‐optics from the MIT group that pioneered so many of these experiments, see B. Lax and J. G. Mavroides, in Ref. 10, Vol. 3 (1967), p. 321. Later in that same volume (p. 421), E. D. Palik and G. B. Wright reviewed free carrier magnetoptic effects.
158.
158.For a further overview of interband magneto‐optics, including GaAs, see R. L. Aggarwal, in Ref. 10, vol. 9 (1972), p. 151.
159.
159.T. S. Moss and A. K. Walton, Proc. Phys. Soc. London. 74, 131 (1959).
160.
160.M. Cardona, Phys. Rev. 121, 752 (1961).
161.
161.H. Piller, J. Phys. Soc. Jpn. Suppl. 21, 206 (1966).
161.See also Piller in Ref. 10, Vol. 8 (1972), p. 103.
162.
162.W. Thielemann, Phys. Status Solidi 34, 519 (1969).
163.
163.M. V. Hobden, Phys. Lett. 16, 107 (1965).
164.
164.S. Narita, M. Kobayashi, and N. Koike, in Proceedings of the 9th International Conference on Physics of Semiconductors, Moscow, 1968 (Nauka, Leningrad, 1968), p. 347.
165.
165.Q. H. F. Vrehen, J. Phys. Chem. Solids 29, 129 (1968).
166.
166.M. Reine, R. L. Aggarwal, B. Lax, and C. M. Wolfe, Phys. Rev. B 2, 458 (1970);
166.M. Reine, R. L. Aggarwal, and B. Lax, Phys. Rev. B 5, 3033 (1972).
167.
167.K. Hess, D. Bimberg, N. O. Lipari, J. U. Fischbach, and M. Altarelli, in Ref. 12 (1976), p. 142.
168.
168.G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, in Ref. 10, Vol. 12 (1977), p. 169.
169.
169.D. L. Rode, in Ref. 10, Vol. 10 (1975), p. 1.
170.
170.K. G. Hambleton, C. Hilsum, and B. R. Holeman, Proc. Phys. Soc. London. 7, 1147 (1961).
171.
171.R. E. Neidert, Electron. Lett. 16, 244 (1980).
172.
172.K. S. Champlin and G. H. Glover, Appl. Phys. Lett. 12, 231 (1968).
173.
173.T. Lu, G. H. Glover, and K. S. Champlin, Appl. Phys. Lett. 13, 404 (1968).
174.
174.I. Strzalkowski, S. Joshi, and C. R. Crowell, Appl. Phys. Lett. 28, 350 (1976).
175.
175.R. N. Hall and J. H. Racette, J. Appl. Phys. 32, 2078 (1961).
176.
176.W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, J. Appl. Phys. 32, 2102 (1961).
177.
177.Things can get much more complicated for heavy P‐type doping of GaAs, when for one, or both, of the uppermost valence bands. D. Olego, H. R. Chandrasekhar, and M. Cardona, on p. 1313 of Ref. 128, report that holes in GaAs have a damping coefficient some 10 times larger than for conduction electrons.
178.
178.A. A. Kukharskii, Sov. Phys. Solid State 14, 1501 (1972).
179.
179.A. A. Kukharskii, Solid St. Commun. 13, 1761 (1973).
180.
180.A. Mooradian and G. B. Wright, Phys. Rev. Lett. 16, 999 (1966).
181.
181.C. G. Olson and D. W. Lynch, Phys. Rev. 177, 1231 (1969).
182.
182.R. T. Holm and E. D. Palik, J. Vac. Sci. Technol. 13, 889 (1976).
183.
183.R. T. Holm, J. W. Gibson, and E. D. Palik, J. Appl. Phys. 48, 212 (1977).
184.
184.H. R. Chandrasekhar and A. K. Ramdas, Phys. Rev. B 21, 1511 (1980).
185.
185.M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).
186.
186.S. Iwasa, I. Balslev, and E. Burstein, in Ref. 104 (1964), p. 1077.
187.
187.W. G. Spitzer, in Ref. 10, Vol. 3 (1967), p. 17.
188.
188.M. Born and M. Blackman, Z. Phys. 82, 551 (1933).
189.
189.M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).
190.
190.J. L. Birman, Phys. Rev. 127, 1093 (1962);
190.J. L. Birman, 131, 1489 (1963)., Phys. Rev.
191.
191.L. Van Hove, Phys. Rev. 89, 1189 (1953).
192.
192.R. J. Collins and H. Y. Fan, Phys. Rev. 93, 674 (1954).
193.
193.F. A. Johnson, Proc. Phys. Soc. London. 73, 265 (1959).
194.
194.D. A. Kleinman and W. G. Spitzer, Phys. Rev. 118, 110 (1960).
195.
195.W. G. Spitzer, J. Appl. Phys. 34, 792 (1963).
196.
196.F. A. Johnson, in Ref. 8, p. 179.
197.
197.R. Braunstein and E. O. Kane, J. Phys. Chem. Solids 23, 1423 (1962).
198.
198.W. G. Spitzer and J. M. Whelan, Phys. Rev. 114, 59 (1959).
199.
199.E. P. Rashevskaya and V. I. Fistul, Sov. Phys. Solid State 9, 2849 (1968).
200.
200.K. Osamura and Y. Murakami, Jpn. J. Appl. Phys. 11, 365 (1972).
201.
201.H. Y. Fan, in Ref. 10, Vol. 3 (1967), p. 405.
202.
202.A. S. Jordan, J. Appl. Phys. 51, 2218 (1980).
203.
203.D. T. F. Marple, J. Appl. Phys. 35, 1241 (1964).
204.
204.F. Oswald and R. Schade, Z. Naturforsch. A 9, 611 (1954).
205.
205.L. C. Barcus, A. Perlmutter, and J. Callaway, Phys. Rev. 11, 167 (1958).
206.
206.B. O. Seraphin and H. E. Bennett, in Ref. 10, Vol. 3 (1967), p. 499.
207.
207.D. D. Sell, H. C. Casey, and K. W. Wecht, J. Appl. Phys. 45, 2650 (1974).
208.
208.R. C. Eden, Stanford Univ. Report SEL‐67‐038 (1967) (unpublished).
209.
209.F. C. Jahoda, Phys. Rev. 107, 1261 (1957).
210.
210.H. R. Phillip and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).
210.See also Phillip and Ehrenreich on p. 93 of Ref. 10, Vol. 3 (1967).
211.
211.W. M. DeMeis, Thesis, Harvard Univ. (1965) (unpublished).
212.
212.P. Y. Yu and M. Cardona, Phys. Rev. B 2, 3193 (1970).
213.
213.D. Penn, Phys. Rev. 128, 2093 (1962).
214.
214.J. G. Mendoza‐Alvarez, F. D. Nunes, and N. B. Patel, J. Appl. Phys. 51, 4365 (1980).
215.
215.E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957). Kane described the k.p model here specifically for the bands of InSb. That approach is equally valuable for other direct gap III‐V compounds such as GaAs, when due account is made for the differences in the ratio of gap width to spinorbit splitting energy among the various compounds.
216.
216.R. J. Elliott, Phys. Rev. 108, 1384 (1957).
217.
217.Two major accounts of the implications of the Elliott model (Ref. 216) for optical absorption, including excitonic (electron/hole coulombic attraction) effects, are: T. P. McLean, in Ref. 8, Vol. 5 (1960), p. 53; and J. O. Dimmock, in Ref. 10, Vol. 3 (1967), p. 259.
218.
218.G. H. Wannier, Phys. Rev. 52, 191 (1937).
219.
219.The electron and hole of an exciton are bound to each other; thus why speak of a free exciton? For a Frenkel exciton, the radius of the mutually bound entity is comparable with an interatomic spacing. The orbital radius is much larger for a weakly bound Wannier exciton, as appropriate for GaAs with its large dielectric constant and small Each type is referred to as being “free” if it is not prevented from moving bodily through space, through having become trapped at an impurity or defect site.
220.
220.Y. Abe, J. Phys. Soc. Jpn. 19, 818 (1964).
221.
221.A. Baldereschi and N. O. Lipari, Phys. Rev. B 3, 439 (1971).
222.
222.M. D. Sturge, Phys. Rev. 127, 768 (1962).
223.
223.M. A. Gilleo, P. T. Bailey, and D. E. Hill, J. Lumin. 1/2, 562 (1970).
224.
224.D. D. Sell, Phys. Rev. B 6, 3750 (1972).
225.
225.H. C. Casey, D. D. Sell, and K. W. Wecht, J. Appl. Phys. 46, 250 (1975).
226.
226.T. S. Moss and T. D. F. Hawkins, Infrared Phys. 1, 111 (1961).
227.
227.I. Kudman and T. Seidel, J. Appl. Phys. 33, 771 (1962).
228.
228.D. E. Hill, Phys. Rev. 133, A866 (1964).
229.
229.F. Urbach, Phys. Rev. 92, 1324 (1953).
230.
230.As shown by Sturge’s data (Ref. 222) in the curves of Fig. 36, the edge does become steeper on cooling, at least the upper part does. The region for is not noticeably steepened for cryogenic temperatures. However, this is the part of the edge for which it is hardest to separate the intrinsic and extrinsic parts of the total optical density.
231.
231.D. Redfield, Phys. Rev. 130, 916 (1963).
232.
232.W. Franz, Z. Naturforsch. A 13, 494 (1958).
233.
233.L. V. Keldysh, Sov. Phys. JETP 34, 788 (1958).
234.
234.J. Callaway, Phys. Rev. 130, 549 (1963).
235.
235.R. W. Koss and L. M. Lambert, Phys. Rev. B 5, 1479 (1972).
236.
236.W. J. Turner and W. E. Reese, J. Appl. Phys. 35, 350 (1964).
237.
237.J. I. Pankove, Phys. Rev. 140, A2059 (1965).
238.
238.E. Burstein, Phys. Rev. 93, 632 (1954).
239.
239.T. S. Moss, Proc. Phys. Soc. London B 76, 775 (1954).
240.
240.E. O. Kane, Phys. Rev. 131, 79 (1963).
241.
241.B. I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966).
242.
242.M. Saitoh and S. F. Edwards, J. Phys. C 7, 3937 (1974).
243.
243.D. D. Sell and H. C. Casey, J. Appl. Phys. 45, 800 (1974).
244.
244.The Kramers‐Kronig analysis procedure (Ref. 209) uses an integral involving the reflectance R, taken from to obviously not possible in practice. Philipp and Ehrenreich (Ref. 210) pointed out that extrapolation to zero frequency is straightforward in terms of the infrared refractive index. Extrapolation to infinite frequency can be done reasonably reliably if data concerning R is available to the point at which and continues to fall. For their R was less than 0.01, and falling steadily.
245.
245.F. Herman and W. E. Spicer, Phys. Rev. 174, 906 (1968).
246.
246.W. E. Spicer and R. C. Eden, in Ref. 164 (1968), p. 65.
247.
247.L. W. James, R. C. Eden, J. L. Moll, and W. E. Spicer, Phys. Rev. 174, 909 (1968).
248.
248.Y. Petroff, in Ref. 12 (1976), p. 975.
249.
249.M. Skibowski, G. Sprussel, and V. Saile, in Ref. 128 (1979), p. 1359.
250.
250.W. D. Grobman and D. E. Eastman, Phys. Rev. Lett. 29, 1508 (1972).
251.
251.D. E. Eastman, W. D. Grobman, J. L. Freeouf, and M. Erbaduk, Phys. Rev. B 9, 3473 (1974).
252.
252.L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, Phys. Rev. B 9, 600 (1974).
253.
253.N. J. Shevchik, J. Tejeda, and M. Cardona, Phys. Rev. B 9, 2627 (1974).
254.
254.F. Herman, Phys. Rev. 93, 1214 (1954);
254.F. Herman, Phys. Rev. 95, 847 (1954);
254.F. Herman, Proc. Inst. Rad. Engr. 43, 1703 (1955).
255.
255.H. Welker, Z. Naturforsch. A 8, 248 (1953);
255.H. Welker, J. Phys. Chem. Solids 8, 14 (1959);
255.H. Welker, IEEE Trans. Electron Devices ED‐23, 664 (1976).
256.
256.The heavy and light hole combination has in GaAs, compared with almost in Ge. The GaAs conduction electrons appear superficially more mobile than in Ge, but only because different minima are involved. For the L minima (lowest in Ge, and second‐lowest in GaAs), in Ge; some four times larger than the estimate of Aspnes (Ref. 152) for in GaAs, and larger than likely by extrapolation of the curves in Fig. 65.
257.
257.C. A. Coulson, L. R. Redei, and D. Stocker, Proc. R. Soc. London 270, 357 (1962).
258.
258.N. N. Sirota and N. M. Olekhovich, Dokl. Adad. Nauk. SSSR 136, 660, 879 (1961).
259.
259.J. J. DeMarco and R. J. Weiss, Phys. Lett. 13, 209 (1964).
260.
260.R. Colella, Phys. Rev. B 3, 4308 (1971).
261.
261.A. E. Attard, F. A. Mifsud, A. K. Sant, and J. A. Sultana, J. Phys. C 2, 816 (1969).
262.
262.G. Arlt and P. Quadflieg, Phys. Status Solidi 25, 323 (1968).
263.
263.R. M. Martin and K. Kunc, Phys. Rev. B 24, 2081 (1981).
264.
264.J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).
265.
265.J. P. Walter and M. L. Cohen, Phys. Rev. B 4, 1877 (1971).
266.
266.J. Ihm and J. D. Joannopoulos, Phys. Rev. B 24, 4191 (1981).
267.
267.C. S. Wang and B. M. Klein, Phys. Rev. B 24, 3393 (1981).
268.
268.L. Pauling, The Nature of the Chemical Bond (Cornell, Ithaca, New York, 1960).
269.
269.J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970);
269.J. A. Van Vechten, Phys. Rev. 182, 891 (1969);
269.J. A. Van Vechten, Phys. Rev. 187, 1007 (1969);
269.J. C. Phillips and J. A. Van Vechten, Phys. Rev. B 2, 2147 (1970).
270.
270.F. Herman, J. Electron. 1, 103 (1955).
271.
271.A. Sagar, Phys. Rev. 112, 1533 (1958).
272.
272.M. Glicksman, J. Phys. Chem. Solids 8, 511 (1959).
273.
273.J. Callaway, J. Electron. 2, 330 (1957).
274.
274.F. Herman, Rev. Mod. Phys. 30, 102 (1958).
275.
275.F. Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963).
276.
276.A. Marcus, Phys. Rev. 135, A527 (1964).
277.
277.M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966).
278.
278.F. H. Pollak, C. W. Higginbotham, and M. Cardona, J. Phys. Soc. Jpn. Suppl. 21, 20 (1966).
279.
279.F. Herman, R. L. Kortum, C. D. Kuglin, and J. P. Van Dyke, Methods Comput. Phys. 8, 193 (1968).
280.
280.J. Chelikowsky, D. J. Chadi, and M. L. Cohen, Phys. Rev. B 8, 2786 (1973).
281.
281.J. Chelikowsky and M. L. Cohen, Phys. Rev. Lett. 31, 1582 (1973).
282.
282.K. C. Pandey and J. C. Phillips, Phys. Rev. B 9, 1552 (1974).
283.
283.W. A. Harrison, Phys. Rev. B 8, 4487 (1973).
284.
284.W. A. Harrison and S. Ciraci, Phys. Rev. B 10, 1516 (1974).
285.
285.S. T. Pantelides and W. A. Harrison, Phys. Rev. B 11, 3006 (1975).
286.
286.See J. C. Phillips, Phys. Rev. Lett. 34, 1196 (1975);
286.and response of W. A. Harrison, Phys. Rev. Lett. 34, 1198 (1975).
287.
287.G. Dresselhaus, Phys. Rev. 100, 580 (1955).
288.
288.H. Ehrenreich, Phys. Rev. 120, 1951 (1960).
289.
289.L. W. Aukerman and R. K. Willardson, J. Appl. Phys. 31, 939 (1960).
290.
290.B. K. Ridley and T. B. Watkins, Proc. Phys. Soc. London 78, 293 (1961).
291.
291.C. Hilsum, Proc. IRE 50, 185 (1962).
292.
292.E. M. Conwell and M. O. Vassell, Phys. Rev. 166, 797 (1968).
293.
293.W. Fawcett, A. D. Boardman, and S. Swain, J. Phys. Chem. Solids 31, 1963 (1970).
294.
294.Some doubts as to the authority of ordering were, however, expressed by Fawcett et al. (Ref. 293).
295.
295.D. E. Aspnes and M. Cardona, Phys. Rev. B 17, 741 (1978).
296.
296.M. B. Panish and H. C. Casey, J. Appl. Phys. 40, 163 (1969).
297.
297.M. A. Afromowitz and D. Redfield, in Ref. 164 (1968), p. 98.
298.
298.J. L. Shay, Phys. Rev. B 2, 803 (1970).
299.
299.D. D. Sell, S. E. Stokowski, R. Dingle, and J. V. DiLorenzo, Phys. Rev. B 7, 4568 (1973).
300.
300.D. Bimberg and W. Schairer, Phys. Rev. Lett. 28, 442 (1972).
301.
301.Y. P. Varshni, Physica 34, 149 (1967).
302.
302.C. D. Thurmond, J. Electrochem. Soc. 122, 1133 (1975).
303.
303.B. Welber, M. Cardona, C. K. Kim, and S. Rodriguez, Phys. Rev. B 12, 5729 (1975).
304.
304.Y.‐F. Tsay and B. Bendow, Phys. Rev. B 14, 2681 (1976).
305.
305.G. D. Pitt and J. Lees, Phys. Rev. B 2, 4144 (1970);
305.G. D. Pitt, J. Phys. C 6, 1586 (1973).
306.
306.Figure 45 is drawn to be deliberately ambiguous as to whether the lowest conduction band of (100) symmetry should be described as (with extrema actually on the zone boundary, and only three ellipsoids), or as (extremal location a little inside the zone, and six ellipsoidal surfaces for any slightly higher energy). Pitt and Lees (Ref. 305) concluded the former, and Aspnes (Ref. 152) seems to have gone along with status also. Since then, Pinczuk et al. (Ref. 128) reported Raman measurements which support the placement of six extremal locations 10% inside the zone boundary. The curve of Chelikowsky and Cohen (Ref. 264), as reported in Fig. 43, is almost flat for some distance in from the zone boundary, consistent with either or symmetry. Thus the indirect optical gap from the valence maximum to thse conduction states will be very nearly the same for in the range
307.
307.J. M. Whelan and G. H. Wheatley, J. Phys. Chem. Solids 6, 169 (1958).
308.
308.I. Balslev, Phys. Rev. 173, 762 (1968).
309.
309.A. Onton, R. J. Chicotka, and Y. Yacoby, in Proceedings of the 11th International Conference on Physics of Semiconductors, Warsaw (PWN, Warsaw, 1972), p. 1023.
310.
310.P. Blood, Phys. Rev. B 6, 2257 (1972).
311.
311.R. J. Elliott, Phys. Rev. 96, 266, 280 (1954).
312.
312.G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).
313.
313.R. N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev. 104, 637 (1956).
314.
314.B. Lax, Rev. Mod. Phys. 30, 122 (1958).
315.
315.J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).
316.
316.I. Balslev and P. Lawaetz, Phys. Lett. 19, 6 (1965).
317.
317.J. C. Hensel and K. Suzuki, Phys. Rev. B 9, 4219 (1974).
318.
318.The Ge and Si data were reviewed by J. S. Blakemore, Semiconductor Statistics (Dover, New York, 1983), Sec. 1.5 (in press).
319.
319.A. L. Mears and R. A. Stradling, J. Phys. C 4, L22 (1971).
320.
320.M. S. Skolnick, A. K. Jain, R. A. Stradling, J. Leotin, J. C. Ousset, and S. Askenazy, J. Phys. C 9, 2809 (1976).
321.
321.R. Dingle, Phys. Rev. B 8, 4627 (1973).
322.
322.R. P. Seisyan, M. A. Abdullaev, and V. D. Drazin, Sov. Phys. Semicond. 7, 522 (1973).
323.
323.L. Eaves, R. A. Hoult, R. A. Stradling, S. Askenazy, R. Barbaste, G. Carrere, J. Leotin, J. C. Portal, and J. P. Ulmet, J. Phys. C 10, 2831 (1977).
324.
324.Eight vectors of [111] symmetry can be drawn radiating from the zone center. For four of these, a linear k term will act to raise the energy, and this set of four has tetrahedral symmetry. The other set of four directions allows energy to fall more speedily from the start.
325.
325.M. A. Gilleo and P. T. Bailey, Phys. Rev. 187, 1181 (1969).
326.
326.Skolnick et al. (Ref. 320) reviewed data that could indicate mini‐maxima in GaAs, GaSb, and InSb, and ended up by treating this as negligible for GaAs.
327.
327.J. L. Robert, B. Pistoulet, D. Barjon, and A. Raymond, J. Phys. Chem. Solids 34, 2221 (1974) offer an argument directed towards the anticipated significance of such mini‐maxima, but in GaSb, not in GaAs.
328.
328.R. H. Parmenter, Phys. Rev. 100, 573 (1955).
329.
329.M. Cardona, in Ref. 10, Vol. 3 (1967), p. 125.
330.
330.P. Lawaetz, Phys. Rev. B 4, 3460 (1971).
331.
331.D. J. Chadi, A. H. Clark, and R. D. Burnham, Phys. Rev. B 13, 4466 (1976).
332.
332.C. Herrmann and C. Weisbuch, Phys. Rev. B 15, 823 (1977).
333.
333.A. Raymond, J. L. Robert, and C. Bernard, J. Phys. C 12, 2289 (1979).
334.
334.The secular equation was actually expressed as a quartic by Kane (Ref. 215), with four roots. The additional root was for the VI heavy‐hole band. However, the latter root is of lesser value, for it dictated a bandedge mass of itself, twice as large as the experimentally observed value.
335.
335.Yu. I. Ukhanov, Sov. Phys. Solid State 5, 79 (1963).
336.
336.R. A. Stradling and R. A. Wood, J. Phys. C 1, 1711 (1968).
337.
337.J. M. Chamberlain, P. E. Simmonds, R. A. Stradling, and C. C. Bradley, J. Phys. C. 4, L38 (1971).
338.
338.T. O. Poehler, Appl. Phys. Lett. 20, 69 (1972).
339.
339.G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, Solid State Commun. 7, 921 (1969).
340.
340.T. Nishino, M. Okuyama, and Y. Hamakawa, J. Phys. Chem. Solids 30, 2671 (1969).
341.
341.J. S. Blakemore, Semiconductor Statistics (Dover, New York, 1983).
342.
342.J. S. Blakemore, Solid State Electron. 25 (1982) (in press).
343.
343.X. Aymerich‐Humet, F. Serra‐Mestres, and J. Millan, Solid State Electron. 24, 981 (1981).
344.
344.A. Sommerfeld and N. H. Frank, Rev. Mod. Phys. 3, 1 (1931).
345.
345.D. Fink and R. Braunstein, Solid State Commun. 15, 1627 (1974).
346.
346.T. K. Gaylord and T. A. Rabson, Phys. Lett. 29A, 716 (1969).
347.
347.K. H. Nichols, C. M. L. Yee, and C. M. Wolfe, Solid State Electron. 23, 109 (1980).
348.
348.D. E. Aspnes, in Ref. 9, No. 33b (1977), p. 110.
349.
349.O. G. Folberth and H. Weiss, Z. Naturforsch. A 10, 615 (1955).
350.
350.R. Braunstein, J. Phys. Chem. Solids 8, 280 (1959).
351.
351.A. K. Walton and V. K. Mishra, Proc. Phys. Soc. London 90, 1111 (1967).
352.
352.R. W. Shaw, Phys. Rev. B 3, 3283 (1971).
353.
353.T. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953).
354.
354.B. Lax and J. G. Mavroides, Phys. Rev. 100, 1650 (1955).
355.
355.D. Auvergne, J. Camassel, H. Mathieu, and M. Cardona, Phys. Rev. B 9, 5168 (1974).
356.
356.Optical transitions from the splitoff band to upper valence bands in P‐type GaAs were noted in connection with the work of Braunstein (Ref. 350). The threshold for transitions to the conduction band was noted in the work of Vrehen (Ref. 165), Sturge (Ref. 222), Sell and Casey (Ref. 243; see Fig. 37), and Sell et al. (Ref. 299). This threshold can also be seen for transitions in the photoionization of acceptor impurities: see W. J. Brown, D. A. Woodbury, and J. S. Blakemore, Phys. Rev. B 8, 5664 (1973).
357.
357.J. D. Wiley, in Ref. 10, Vol. 10 (1975), p. 91.
358.
358.F. D. Rosi, D. Meyerhofer, and R. V. Jensen, J. Appl. Phys. 31, 1105 (1960).
359.
359.A. C. Beer, Galvanomagnetic Effects in Semiconductors (Academic, New York, 1963).
360.
360.K. H. Zschauer, in Ref. 9, No. 17 (1973), p. 3.
361.
361.D. E. Hill, J. Appl. Phys. 41, 1815 (1970).
362.
362.It is reasonable to suppose that the various data points in Fig. 56 were acquired using a magnetic induction in the 1–5 kG range. Thus the Hall mobility values so obtained would tend to fall below the “zero‐field” values by a few percent—to an extent that would not be the same for the seven investigations summarized in the figure. Moreover, the values of assigned against the abscissa scale would almost certainly have been in, in practice, values of Some of these could easily be 20% lower than the true That is relatively unimportant compared with the six decades spanned by the abscissa of Fig. 56, but could be nontrivial in some cases.
363.
363.See D. Chattopadhyay and H. J. Queisser, Rev. Mod. Phys. 53, 745 (1981), for a recent comprehensive review of the principles of ionized impurity scattering, including the Conwell‐Weisskopf, and the Dingle‐Brooks‐Herring approaches.
364.
364.J. Vilms and J. P. Garrett, Solid State Electron. 15, 443 (1972).
365.
365.F. E. Rosztoczy, F. Ermanis, I. Hayashi, and B. Schwartz, J. Appl. Phys. 41, 264 (1970).
366.
366.O. V. Emel’yanenko, T. S. Lagunova, and D. N. Nasledov, Sov. Phys. Solid State 2, 176 (1960).
367.
367.S. M. Gasanli, O. V. Emel’yanenko, V. K. Ergakov, F. P. Kesamanly, T. S. Lagunova, and D. N. Nasledov, Sov. Phys. Semicond. 5, 1641 (1972).
368.
368.J. B. Gunn, Solid State Commun. 1, 88 (1963).
369.
369.J. G. Ruch and G. S. Kino, Phys. Rev. 174, 921 (1968).
370.
370.M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, J. Appl. Phys. 48, 4587 (1977).
371.
371.S. Kratzer and J. Frey, J. Appl. Phys. 49, 4065 (1978).
372.
372.J. Pozela and A. Reklaitis, Solid State Electron. 23, 927 (1980).
373.
373.N. Braslau and P. S. Hauge, IEEE Trans. Electron Dev. ED‐17, 616 (1970).
374.
374.K. Ashida, M. Inoue, J. Shirafuji, and Y. Inuishi, J. Phys. Soc. Jpn. 37, 408 (1974).
375.
375.P. A. Houston and A. G. R. Evans, Solid State Electron 20, 197 (1977).
376.
376.G. P. Srivastava, P. C. Mathur, M. L. Goyal, and S. K. Tripathi, Phys. Lett. A 42, 421 (1973).
377.
377.I. Mojzes, B. Pódör, and I. Balogh, Phys. Status Solidi A 39, K123 (1977).
378.
378.M. Inoue, Y. Nakade, J. Shirafuji, and Y. Inuishi, Jpn. J. Appl. Phys. 10, 818 (1971).
379.
379.P. A. Bostock and D. Walsh, Electron Lett. 5, 623 (1969).
380.
380.E. M. Bastida, G. Fabri, V. Svelto, and F. Vaghi, Appl. Phys. Lett. 18, 28 (1971).
381.
381.V. E. Riginos, J. Appl. Phys. 45, 2918 (1974).
382.
382.P. M. Smith, M. Inoue, and J. Frey, Appl. Phys. Lett. 37, 797 (1980).
383.
383.H. Shichijo and K. Hess, Phys. Rev. B 23, 4197 (1981).
384.
384.G. E. Stillman and C. M. Wolfe, in Ref. 10, Vol. 12 (1977), p. 291.
385.
385.S. M. Sze, Physics of Semiconductor Devices, 2nd edition (Wiley, New York, 1981), Chap. 10.
386.
386.G. E. Stillman, C. M. Wolfe, A. G. Foyt, and W. T. Lindley, Appl. Phys. Lett. 24, 8 (1974).
386.See also T. P. Pearsall, F. Capasso, R. E. Nahory, M. A. Pollack, and J. R. Chelikowsky, Solid State Electron. 21, 297 (1978).
387.
387.C. M. Wolfe and G. E. Stillman, in Ref. 9, No. 9 (1971), p. 3.
388.
388.H. G. B. Hicks and D. F. Manley, Solid State Commun. 7, 1463 (1963).
389.
389.G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, J. Phys. Chem. Solids 31, 1199 (1970).
390.
390.B. Pódör and N. Nádor, Acta Phys. Acad. Sci. Hungary 37, 317 (1974).
391.
391.C. M. Wolfe, G. E. Stillman, and W. T. Lindley, J. Appl. Phys. 41, 3088 (1970).
392.
392.C. Erginsoy, Phys. Rev. 79, 1013 (1950).
393.
393.W. Walukiewicz, J. Lagowski, L. Jastrzebski, and H. C. Gatos, J. Appl. Phys. 50, 5040 (1979).
394.
394.L. R. Weisberg, J. Appl. Phys. 33, 1817 (1962).
395.
395.T. Katoda and T. Sugano, J. Electrochem. Soc. 121, 1066 (1974).
396.
396.B. Pódör, N. Nádor, and I. Bertóti, Phys. Status Solidi A 29, 173 (1975).
397.
397.G. B. Stringfellow and H. Künzel, J. Appl. Phys. 51, 3254 (1980).
398.
398.C. M. Wolfe, G. E. Stillman, and J. O. Dimmock, J. Appl. Phys. 41, 505 (1970).
399.
399.R. T. Bate, in Ref. 10, Vol. 4 (1968), p. 459.
400.
400.C. M. Wolfe and G. E. Stillman, in Ref. 10, Vol. 10 (1975), p. 175.
401.
401.G. M. Martin, A. Mitonneau, and A. Mircea, Electron. Lett. 13, 191 (1977).
402.
402.J. Lagowski, H. C. Gatos, J. M. Parsey, K. Wada, M. Kaminska, and W. Walukiewicz, Appl. Phys. Lett. 40, 342 (1982).
403.
403.G. R. Cronin and R. W. Haisty, J. Electrochem. Soc. 111, 874 (1964).
404.
404.D. C. Look, J. Phys. Chem. Solids 36, 1311 (1975).
405.
405.G. Betko and K. Merinsky, J. Appl. Phys. 50, 4212 (1979).
406.
406.G. M. Martin, A. Mitonneau, D. Pons, A. Mircea, and D. W. Woodard, J. Phys. C 13, 3855 (1980).
407.
407.J. S. Blakemore, in Semi‐Insulating III‐V Materials, Nottingham 1980, edited by G. J. Rees (Shiva, Orpington, 1980), p. 29.
408.
408.W. C. Dunlap, Phys. Rev. 79, 286 (1950).
409.
409.L. P. Hunter, Phys. Rev. 94, 115 (1954).
410.
410.G. M. Martin, in Ref. 408, p. 13.
http://aip.metastore.ingenta.com/content/aip/journal/jap/53/10/10.1063/1.331665
Loading
/content/aip/journal/jap/53/10/10.1063/1.331665
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/53/10/10.1063/1.331665
1982-10-01
2016-05-28
Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/53/10/10.1063/1.331665&pageURL=http://scitation.aip.org/content/aip/journal/jap/53/10/10.1063/1.331665'
Right1,Right2,Right3,