Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/88/6/10.1063/1.1286035
1.
1.An overview of recent measurements and problem areas was given by M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
1.Recent examples of transport coefficients covering many orders of magnitude and/or unusual systems are: (a) R. Busch, S. Schneider, A. Peker, and W. L. Johnson, Appl. Phys. Lett. 68, 493 (1996);
1.R. Busch, A. Mauhr, E. Bakke, and W. L. Johnson, Mater. Res. Soc. Symp. Proc. 455, 369 (1997);
1.(b) F. Fujara, B. Geil, H. Sillescu, and G. Fleischer, Z. Phys. B: Condens. Matter 88, 195 (1992);
1.(c) W. Suchanski, J. Pakula, M. Paulch, and J. Ziolo, Mater. Res. Soc. Symp. Proc. 455, 325 (1997);
1.(d) M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 100, 5237 (1996).
2.
2.Some recent examples are: (a) F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 104, 2043 (1996);
2.(b) P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams, and J. P. Carini, Phys. Rev. Lett. 65, 1108 (1990);
2.(c) P. Lunkenkeimer, A. Pimenov, M. Dressel, Y. G. Goncharov, R. Böhmer, and A. Loidl, Phys. Rev. Lett. 77, 318 (1996).
3.
3.Some recent examples of mechanical relaxation are (i) longitudinal relaxation, from light scattering: (a) D. Sidebottom and L. Torell, Phys. Rev. Lett. 71, 2260 (1993);
3.D. Sidebottom, R. Berman, L. Börjesson, and L. M. Torell, Phys. Rev. Lett. 68, 3587 (1992);
3.(b) L. M. Torell, L. Börjesson, and M. Elmroth, J. Phys. (Paris), Colloq. 2, SA207 (1990);
3.(c) G. Li, W. M. Du, A. Sakai, and H. Z. Cummins, Phys. Rev. A 46, 3343 (1992);
3.(d) H. Z. Cummins, G. Li, W. M. Du, and J. Hernandez, Physica A 204, 169 (1994);
3.(ii) bulk relaxation through direct observation of density fluctuation decay using neutron spin-echo measurements: (e) F. Mezei, W. Knaak, and B. Farrago, Phys. Rev. Lett. 58, 571 (1987);
3.(iii) Bulk relaxation from probe molecule excitation methods: H. Wendt and R. Richert, J. Phys. Chem. A 102, 5775 (1998);
3.(iv) shear mechanical, by various methods: (f) L. M. Torell and R. Aronsson, J. Chem. Phys. 78, 1121 (1983);
3.(g) N. Menon, S. R. Nagel, and D. C. Veneros, Phys. Rev. Lett. 73, 963 (1994);
3.(h) T. Christensen and N. B. Olsen, Rev. Sci. Instrum. 66, 5019 (1995);
3.(i) D. J. Plazek, C. A. Bero, and I. C. Chay, J. Non-Cryst. Solids 172–174, 181 (1994);
3.(j) D. J. Plazek, and K. L. Ngai, AIP Polymer Property Handbook, edited by J. E. Mark (American Institute of Physics, New York, 1996).
4.
4.(a) J. F. Stebbins, I. Farnan, and X. Xue, Chem. Geol. 96, 371 (1992);
4.J. F. Stebbins and I. Farnan, Science 255, 586 (1992);
4.I. Farnan and J. F. Stebbins, Science 265, 1206 (1994);
4.(b) L. Andreozzi, A. Di Schino, M. Giordano, and D. Leporini, J. Phys.: Condens. Matter 8, 3795 (1996);
4.(c) L. Andreozzi and D. Leporini, J. Phys.: Condens. Matter 8, 9605 (1996);
4.(d) L. Andreozzi, M. Giordano, and D. Leporini, J. Phys. Chem. 103, 4097 (1999).
5.
5.(a) N. O. Birge and S. R. Nagel, Phys. Rev. Lett. 54, 2674 (1985);
5.(b) T. Christensen, J. Phys. (Paris), Colloq. 46, 8 (1985);
5.(c) C. Bauer, R. Böhmer, S. Moreno-Flores, R. Richert, and H. Sillescu, Phys. Rev. E 61, 1755 (1999);
5.(d) M. Oguni, H. Hikawa, and H. Suga, Thermochim. Acta 158, 143 (1990);
5.(e) H. Fujimori and M. Oguni, Solid State Commun. 94, 157 (1995);
5.(f) H. Fujimori and M. Oguni, J. Chem. Thermodyn. 26, 367 (1994);
5.(g) T. Hikima, M. Hanaya, and M. Oguni, Solid State Commun. 93, 713 (1995).
6.
6.(a) C. A. Angell, J. Non-Cryst. Solids 131–133, 13 (1991);
6.C. A. Angell, in Relaxations in Complex Systems, edited by K. Ngai and G. B. Wright (National Technical Information Service, U.S. Department of Commerce, Springfield, VA, 1985), p. 1;
6.C. A. Angell, J. Phys. Chem. Solids 49, 863 (1988);
6.(b) R. Richert and C. A. Angell, J. Chem. Phys. 108, 9016 (1998);
6.(c) J. L. Green, K. Ito, K. Xu, and C. A. Angell, J. Phys. Chem. 103, 3991 (1999);
6.(d) C. A. Angell, in Complex Behavior of Glassy Systems (Proc. 14th Sitges Conference on Theoretical Physics, 1966), edited by M. Rubi (Springer, 1967), p. 1.
7.
7.A. J. Batchinski, Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 84, 643 (1993).
8.
8.J. H. Hildebrand, Viscosity and Diffusion (Wiley, New York, 1977).
9.
9.B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53, 3813 (1990).
10.
10.R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1996).
11.
11.(a) U. Bengtzelius, W. Götze, and A. Sjölander, J. Chem. Phys. 17, 5915 (1989);
11.(b) W. Götze, in Liquids, Freezing, and the Glass Transition, edited by J. P. Hansen and D. Levesque, NATO-ASI Series (Plenum, New York, 1989).
12.
12.H. Eyring, J. Chem. Phys. 4, 283 (1936).
13.
13.J. D. Ferry, L. D. Grandine, and E. R. Fitzgerald, J. Appl. Phys. 24, 911 (1953).
14.
14.(a) H. Bässler, Phys. Rev. Lett. 58, 767 (1987);
14.(b) R. Richert and H. Bassler, J. Phys. B Condensed Matter 2, 2273 (1990).
15.
15.(a) T. A. Litovitz, J. Chem. Phys. 20, 1088 (1952); see, also
15.(b) L. Lyon and T. A. Litovitz, J. Appl. Phys. 27, 129 (1956);
15.(c) T. A. Litovitz in Physics of Non-Crystalline Solids, edited by J. A. Prins (North-Holland, Amsterdam, 1965), p. 220;
15.(d) T. A. Litovitz and G. E. McDuffie, Jr., J. Chem. Phys. 39, 729 (1963);
15.(e) R. Chamberlin (private communication, 1994).
16.
16.(a) H. Vogel, J. Physik. Z. 22, 645 (1921);
16.(b) G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925);
16.(c) G. Tamann and W. Z. Hesse, Anorg. Allgem. Chem. 156, 245 (1926);
16.(d) G. W. Scherer, J. Am. Ceram. Soc. 75, 1060 (1992).
17.
17.M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).
18.
18.J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
19.
19.M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).
20.
20.M. F. Shlesinger, Annu. Rev. Phys. Chem. 39, 269 (1988).
21.
21.J. T. Bendler and M. F. Schlesinger, J. Stat. Phys. 53, 531 (1988).
22.
22.(a) R. Hall and P. G. Wolynes, J. Chem. Phys. 86, 2943 (1987);
22.(b) P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).
23.
23.G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
24.
24.P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).
25.
25.C. A. Angell and W. Sichina, Ann. (N.Y.) Acad. Sci. 279, 53 (1976).
26.
26.J. C. Dyre, N. B. Olsen, and T. Christensen, Phys. Rev. B 53, 2171 (1996).
27.
27.(a) L. Wu, P. K. Dixon, S. R. Nagel, B. D. Williams, and J. P. Carini, J. Non-Cryst. Solids 131, 32 (1991);
27.(b) C. T. Moynihan and H. Sasabe, J. Polym. Sci., Part B: Polym. Phys. 16, 1447 (1978).
28.
28.(a) H. Sillescu, J. Non-Cryst. Solids 131–133, 378 (1991);
28.(b) M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 102, 471 (1995);
28.M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 104, 7210 (1996);
28.(c) R. Richert, Chem. Phys. Lett. 171, 222 (1990);
28.R. Richert, J. Phys. Chem. B101, 6323 (1997);
28.R. Richert and A. Wagener, J. Phys. Chem. 97, 3146 (1993);
28.R. Richert and M. Richert, Phys. Rev. E 58, 779 (1998);
28.(d) G. Williams and P. J. Harris, Faraday Symp. Chem. Soc. 6, 14 (1972);
28.M. Davis, P. J. Harris, and G. Williams, J. Chem. Soc., Faraday 2, 1785 (1973);
28.(e) A. Barkatt and C. A. Angell, J. Phys. Chem. 79, 2192 (1975);
28.C. A. Angell, A. Barkatt, C. T. Moynihan, and H. Sasabe, on Molten Salts, edited by J. P. Pemsler (The Electrochemical Soc. Inc., Penington, NJ, 1976), p. 195;
28.(f) R. Böhmer, E. Sanchez, and C. A. Angell, J. Phys. Chem. 96, 9089 (1992).
29.
29.(a) G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925);
29.(b) F. Stickel (private communication).
30.
30.A. Inoue et al., Mater. Trans., JIM 34, 351 (1993);
30.A. J. Fecht, Mater. Res. Soc. Symp. Proc. 455, 307 (1997).
31.
31.(a) P. B. Macedo, J. Chem. Phys. 49, 1887 (1968);
31.(b) R. Weiler, R. Bose, and P. B. Macedo, J. Chem. Phys. 53, 1258 (1970);
31.(c) P. B. Macedo, J. H. Simmons, and W. Haller, Phys. Chem. Glasses 9, 156 (1968);
31.(d) A. Napolitano and P. B. Macedo, J. Res. Natl. Bur. Stand., Sect. A 72A, 425 (1968);
31.(e) H. Tweer, J. H. Simmons, and P. B. Macedo, J. Chem. Phys. 54, 1952 (1971).
32.
32.(a) F. Stickel, E. W. Fischer, and A. Schönhals, Phys. Rev. Lett. 73, 2936 (1991);
32.(b) F. Stickel and E. W. Fischer, Physica A 201, 263 (1993);
32.(c) F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 104, 2043 (1996);
32.(d)F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 102, 6251 (1995).
33.
33.P. K. Dixon, Phys. Rev. B 42, 8179 (1990).
34.
34.A. Lee and G. B. McKenna, Polymer 29, 1812 (1988).
35.
35.C. A. Angell, J. Res. Natl. Inst. Stand. Technol. 102, 171 (1997).
36.
36.C. Alba-Simionesco, J. Fan, and C. A. Angell, J. Chem. Phys. 110, 5262 (1999);
36.C. A. Angell, C. Alba-Simionesco, J. Fan, and J. L. Green, NATO ASI Ser., Ser. C 435 (1993).
37.
37.W. Kauzmann, Chem. Rev. 43, 219 (1948).
38.
38.Y. Bottinga, P. Richet, and A. Sipp, Am. Mineral. 80, 305 (1995).
39.
39.B. Derrida, Phys. Rev. Lett. 45, 79 (1987);
39.B. Derrida, Phys. Rev. Lett. 24, 2613 (1987);
39.B. Derrida, Phys. Rev. B 24, 2613 (1981).
40.
40.(a) S. R. Nagel, in Phase Transitions and Relaxation in Systems with Competing Energy Scales, edited by T. Riste and D. Sherrington (Kluwer Academic, Dordrecht, Netherlands, 1993), p. 259;
40.(b) S. R. Nagel and M. Grabow, Ann. (N.Y.) Acad. Sci. 484 (1986).
41.
41.S. N. N. Murthy, J. Phys. Chem. 93, 3347 (1989).
42.
42.P. W. Anderson, Ann. (N.Y.) Acad. Sci. 484 (1986).
43.
43.M. H. Cohen and G. Grest, Adv. Chem. Phys. 48, 370 (1981);
43.M. H. Cohen and G. Grest, Phys. Rev. B 20, 1077 (1979).
44.
44.W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).
45.
45.D. Kivelson, S. A. Kivelson, X. Zhao, Z. Nussinov, and G. Tarjus, Physica A 219, 27 (1995).
46.
46.H. Z. Cummins, Phys. Rev. E 54, 5870 (1996).
47.
47.P. Richet, Geochim. Cosmochim. Acta 48, 47 (1984).
48.
48.P. Richet and Y. Bottinga, Rev. Geophys. 24, 1 (1986).
49.
49.It is worth noting also (a) the direct test of the constancy of the product at the glass transition by S. Takahara, O. Yamamuro, and T. Matsuo, J. Phys. Chem. 99, 9589 (1995),
49.and (b) how well the Adam–Gibbs equation also accounts for the validity of an Ehrenfest-like thermodynamic relation testable at the glass transition [C. A. Angell and W. Sichina, Ann. (N.Y.) Acad. Sci. 279, 53 (1976)], and, as we see in Sec. B, permits rather successful accounts of the out-of-equilibrium isothermal relaxation of quenched and vapor-deposited glasses. Finally, in the form of the Scherer–Hodge version of the Tool–Narayanaswamy–Moynihan phenomenological model (discussed in Sec. B), it permits an adequate description of the T-scanning glass transition itself, in region B of Fig. 1, see Sec. B.1.1, Fig. 17.
50.
50.P. H. Poole, P. F. McMillan, and G. H. Wolf, in Structure, Dynamics and Properties of Silicate Melts, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell (Mineralogical Society of America, Washington, D.C., 1995).
51.
51.M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, Phys. Rev. Lett. 64, 1549 (1990).
52.
52.M. F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983).
53.
53.M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
54.
54.(a) M. Hemmati, C. T. Moynihan, and C. A. Angell, J. Chem. Phys. (submitted);
54.(b) G. Parisi, J. Phys. Chem. 103, 4128 (1999);
54.(c) W. Kob, F. Sciortino, and P. Tartaglia, Europhys. Lett. 49, 590 (2000).
55.
55.(a) W. Oldekop, Glastech Berichte 30, 8 (1957);
55.(b) W. T. Laughlin and D. R. Uhlmann, J. Phys. Chem. 76, 2317 (1972);
55.(c) C. A. Angell and J. C. Tucker, in Chemistry of Process Metallurgy, Richardson Conference (Imperial College of Science, Press London, 1973), edited by J. H. E. Jeffes and R. J. Tait, Inst. Mining Metallurgy Publication, 1974, p. 207.
56.
56.(a) V. N. Novikov, E. Rössler, V. K. Malinovsky, and N. V. Surovtsev, Europhys. Lett. 35, 289 (1996);
56.(b) E. Rossler and A. Sokolov, Chem. Geol. 128, 143 (1996);
56.(c) A. P. Sokolov, J. Non-Cryst. Solids 235–237, 190 (1998);
56.A. P. Sokolov, Endeavour 21, 109 (1997).
57.
57.H. Fujimori and M. Oguni, Solid State Commun. 94, 1157 (1995) (see also
57.A. Kudlik et al., J. Mol. Struct. 479, 201 (1999).
58.
58.(a) P. Harrowell, Phys. Rev. E 48, 4359 (1993);
58.(b) D. Perera and P. Harrowell, Phys. Rev. E 54, 1652 (1996).
59.
59.(a) D. Kivelson, S. A. Kivelson, X. L. Zhao, Z. Nussinov, and G. Tarjus, Physica A 219, 27 (1995);
59.(b) D. Kivelson, G. Tarjus, and S. A. Kivelson, in Supercooled Liquids: Advances and Novel Applications, edited by J. Fourkas et al. (ACS Books, 1997), p. 67;
59.(c) S. A. Kivelson, X.-L. Zhao, D. Kivelson, C. M. Knobler, and T. Fischer, J. Chem. Phys. 102, 2391 (1994).
60.
60.(a) F. S. Stillinger and T. Weber, Science 225, 983 (1984);
60.(b) F. S. Stillinger, Science 267, 1935 (1995);
60.(c) S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature (London) 393, 554 (1998);
60.(d) F. Sciortino and P. Tartaglia, Phys. Rev. Lett. 78, 2385 (1997);
60.(e) E. La Nave, A. Scala, F. W. Starr, F. Sciortino, and H. E. Stanley, Phys. Rev. Lett. 84, 4605 (2000);
60.(f) C. Donati, F. Sciortino, and P. Tartaglia, Phys. Rev. Lett. (submitted);
60.(g) C. A. Angell, B. E. Richards, and V. Velikov, J. Phys. Condensed Matter 11, 75 (1999);
60.(h) D. J. Wales, J. P. K. Doyle, M. A. Miller, P. N. Mortenson, and T. R. Walsh, Adv. Chem. Phys. 115 (in press, 2000);
60.(i) D. J. Wales and J. P. K. Doyle (unpublished).
61.
61.(a) R. J. Speedy and P. G. Debenedetti, Mol. Phys. 88, 1293 (1996);
61.(b) A. Heuer, Phys. Rev. Lett. 78, 4051 (1997);
61.(c) R. J. Speedy, J. Phys. Chem. 103, 4060 (1999).
62.
62.(a) D. Ehlich and H. Sillescu, Macromolecules 23, 1600 (1990);
62.(b) F. Fujara, B. Geil, H. Sillescu, and G. Z. Fleischer, Z. Phys. B: Condens. Matter 88, 195 (1992);
62.(c) E. Rossler and P. J. Eiermann, J. Chem. Phys. 100, 5237 (1994);
62.H. Sillescu, J. Chem. Phys. 104, 4877 (1996);
62.(d) G. Heuberger and H. Sillescu, J. Phys. Chem. 100, 15255 (1996);
62.(e) I. Chang and H. Sillescu, J. Phys. Chem. B 101, 8794 (1997).
63.
63.(a) F. R. Blackburn, C. Y. Wang, and M. D. Ediger, J. Phys. Chem. 100, 18249 (1996);
63.(b) M. D. Ediger, J. Non-Cryst. Solids 235–237, 10 (1998);
63.(c) M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 104, 7210 (1996).
64.
64.(a) H. Yinnon and A. R. Cooper, Phys. Chem. Glasses 21, 204 (1980);
64.(b) G. Brebec, R. Seguin, C. Sella, J. Bevenot, and J. C. Martin, Acta Metall. 28, 327 (1980).
65.
65.(a) C. T. Moynihan, J. Phys. Chem. 70, 339 (1966);
65.(b) J. Kawamura and M. Shimoji, J. Non-Cryst. Solids 88, 286 (1986);
65.J. Kawamura and M. Shimoji, J. Non-Cryst. Solids 88, 295 (1986);
65.(c) H. Tweer, N. Laberge, and P. B. Macedo, J. Am. Ceram. Soc. 54, 121 (1971);
65.(d) R. Bose, R. Weiler, and P. B. Macedo, Phys. Chem. Glasses 11, 117 (1970).
66.
66.B. D. Freeman and A. J. Hill, ACS Symp. Ser. 710, 306 (1998).
67.
67.(a) M. C. Lee and N. A. Peppas, Prog. Polym. Sci. 18, 947 (1993);
67.N. A. Peppas and L. Brannon-Peppas, J. Food. Eng. 22, 189 (1994);
67.(b) Y. Zhang, E. M. Stolper, and G. Wasserburg, Geochim. Cosmochim. Acta 55, 143 (1991);
67.(c) D. B. Dingwell, in Structure, Dynamics, and Properties of Silicate Melts, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell (Mineralogical Society of America, Washington, D. C., 1995), Ch. 2, Fig. 37.
68.
68.(a) C. T. Moynihan, N. Balitactac, L. Boone, and T. A. Litovitz, J. Chem. Phys. 55, 3013 (1971);
68.(b) C. T. Moynihan, J. Electrochem. Soc. 126, 2177 (1979);
68.(c) C. A. Angell, Solid State Ionics 9&10, 3 (1983).
69.
69.K. Ngai, Solid State Ionics 5, 27 (1981).
70.
70.(a) K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941);
70.(b) R. H. Cole and D. W. Davidson, J. Chem. Phys. 20, 1389 (1952);
70.(c) R. V. Chamberlin, Europhys. Lett. 33, 545 (1996);
70.(d) C. Hansen, R. Richert, and E. W. Fischer, J. Non-Cryst. Solids 215, 293 (1997);
70.(e) S. Havriliak, Jr. and S. J. Havriliak, J. Non-Cryst. Solids 172–174, 297 (1994).
71.
71.C. A. Angell and J. Wong, Glass Structure by Spectroscopy (Marcel Dekker, 1976). The “constant loss” feature has a long history. Its origin at high frequencies near the IR and its persistence down to low frequencies, was first outlined, in the absence of much data, in a chapter on Relaxation Spectroscopy in the above book. There it was presented as an absorbance (or conductivity) with first power frequency dependence, but since loss is proportional to (conductivity/frequency), it is the same thing. It will be given some more attention in Sec. C.2.3 and in Sec. D (“short time dynamics”) of this review.
72.
72.(a) A. Zetsche, F. Kremer, W. Jung, and H. Schulze, Polymer 31, 1883 (1990);
72.(b) C. M. Roland and K.-L. Ngai, Macromolecules 25, 363 (1992);
72.(c) A. Zetsche and E. W. Fischer, Acta Polym. 45, 168 (1994).
73.
73.W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
74.
74.(a) W. Kob, C. Donati, P. H. Poole, S. J. Plimpton, and S. C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997);
74.(b) C. Donati, J. F. Douglas, W. Kob, P. H. Poole, S. J. Plimpton, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998);
74.(c) C. Donati, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 82, 6064 (1999);
74.(d) S. C. Glotzer, J. Non-Cryst. Solids (in press).
75.
75.K. L. Ngai, R. W. Rendell, A. F. Yee, and D. J. Plazek, Macromolecules 24, 61 (1991).
76.
76.W. Steffen, A. Patkowski, G. Meier, and E. W. Fischer, J. Chem. Phys. 96, 4171 (1992).
77.
77.(a) J. R. Borjesson Stevens and L. M. Torell, Polymer 28, 1803 (1987);
77.(b) D. Boese, B. Momper, G. Meier, F. Kremer, J.-U. Hagenah, and E. W. Fischer, Macromolecules 22, 4416 (1989).
78.
78.(a) E. A. Pavlatou, Ph.D. thesis, University of Patras, 1994;
78.(b) M. J. Lebon, C. Dreyfus, G. Li, A. Aouadi, H. Z. Cummins, and R. M. Pick, Phys. Rev. E 51, 4537 (1995).
79.
79.C. P. Smyth, Dielectric Behavior and Structure (McGraw Hill, New York, NY, 1955), p. 431.
80.
80.(a) H. Wendt and R. Richert, J. Phys. Chem. A 102, 5775 (1998);
80.(b) A detailed review of the molecular probe dielectric and mechanical relaxation technique using triplet state probes, is now available [R. Richert, J. Chem. Phys. (in press)].
81.
81.Kishimoto, Ph.D. thesis, University of Osaka, 1994.
82.
82.(a) M. A. Floriano and C. A. Angell, J. Chem. Phys. 91, 2537 (1989);
82.(b) W. M. Du, G. Li, H. Z. Cummins, M. Fuchs, J. Toulouse, and L. A. Knauss, Phys. Rev. E 49, 2192 (1994);
82.(c) F. Qi, K. U. Schug, A. Doess, R. Boehmer, H. Sillescu, H. Kolshorn, and H. Zimmerman, J. Chem. Phys. 112, 9455 (2000).
83.
83.(a) G. Meier, B. Gerharz, D. Boese, and E. W. Fischer, J. Chem. Phys. 94, 3050 (1991);
83.(b) G. Meier, B. Gerharz, and D. Boese, J. Non-Cryst. Solids 131–133, 144 (1991).
84.
84.(a) N. B. Ollsen, T. Christensen, and J. C. Dyre, arXiv: cond-mat/0006165, 9 Jun 2000;
84.(b) U. Schneider, R. Brand, P. Lunkenheimer, and A. Loidl, cond-mat/0001055, 5 Jan 2000;
84.(c) C. Hansen and R. Richert, J. Phys. Condens. Matter 9, 9661 (1997);
84.(d) H. Wagner and R. Richert, J. Chem. Phys. 110, 11660 (1999).
85.
85.P. K. Dixon and S. R. Nagel, Phys. Rev. Lett. 65, 1108 (1990).
86.
86.S. N. N. Murthy, J. Phys. Chem. 93, 3347 (1989).
87.
87.T. Christensen and N. B. Olsen, Phys. Rev. B 49, 15396 (1994).
88.
88.T. Christensen and N. B. Olsen, Prog. Theor. Phys. Suppl. 126, 273 (1997).
89.
89.S. R. Elliott, J. Non-Cryst. Solids 170, 97 (1994).
89.One of the objections to modulus spectroscopy raised in this polemic was that the electrical modulus was not directly measurable. This objection was disposed of by the development, by R. Richert and H. Wagner in 1996, of the direct method, which they call “real dielectric relaxation,” since it observes field response at constant displacement [Solid State Ionics 105, 167 (1998)].
90.
90.C. A. Angell and M. Oguni, J. Non-Cryst Solids (submitted).
91.
91.(a) K. Schmidt-Rohr and H. W. Spiess, Phys. Rev. Lett. 66, 3020 (1991);
91.(b) A. Heuer, M. Wilhelm, H. Zimmermann, and H. W. Spiess, Phys. Rev. Lett. 75, 2851 (1995);
91.(c) R. Boehmer, G. Hinze, G. Diezemann, B. Geil, and H. Sillescu, Europhys. Lett. 36, 55 (1996);
91.(d) U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, and H. W. Spiess, Phys. Rev. Lett. 81, 2727 (1998).
92.
92.(a) M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 103, 5684 (1995);
92.(b) M. D. Ediger, Annu. Rev. Phys. Chem. 51 (in press, 2000).
93.
93.C. T. Moynihan and J. Schroeder, J. Non-Cryst. Solids 160, 52 (1993).
94.
94.(a) B. Schiener, A. Loidl, R. Böhmer, and R. V. Chamberlin, Science 274, 752 (1996);
94.(b) R. Boehmer, R. V. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S. C. Kuebler, R. Richert, B. Schiener, H. Sillescu, H. W. Spiess, U. Tracht, and M. Wilhelm, J. Non-Cryst. Solids 235–237, 1 (1998).
95.
95.R. Böhmer, Curr. Opin. Solid State Mater. Sci. 3, 378 (1998).
96.
96.H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).
97.
97.E. W. Fischer, G. Meier, T. Rabenau, A. Patkowski, W. Steffen, and W. Thomas, J. Non-Cryst. Solids 131–133, 134 (1991);
97.see also the Discussion sections from the Heraklion (1991) and Alicante relaxation conferences.
98.
98.(a) I. Cohen, A. Ha, X. L. Zhao, M. Lee, T. Fischer, M. J. Strouse, and D. J. Kivelson, Phys. Chem. 100, 8518 (1996);
98.(b) J. Fourkas, D. Kivelson, U. Mohanty, and K. Nelson, ACS Symp. Ser. 676, (1997);
98.(c) E. Rossler et al., J. Non-Cryst. Solids (in press);
98.(d) R. Richert (private communication).
99.
99.(a) T. Kanaya, A. Patkowski, E. W. Fischer, J. Seils, H. Gläser, and K. Kaji, Acta Polym. 45, 137 (1994);
99.(b) T. Kanaya, A. Patkowski, E. W. Fischer, J. Seils, H. Gläser, and K. Kaji, Macromolecules 28, 7831 (1995).
100.
100.R. Böhmer, G. Hinze, G. Diezemann, B. Geil, and H. Sillescu, Europhys. Lett. 36, 55 (1996).
101.
101.K. L. Ngai, R. W. Rendell, and D. J. Plazek, J. Chem. Phys. 94, 3048 (1991).
102.
102.(a) J. H. Wendorf and E. W. Fischer, Kolloid Z. Z. Polym. 251, 876 (1973);
102.J. H. Wendorf and E. W. Fischer, Kolloid Z. Z. Polym. 251, 884 (1973);
102.(b) G. S. Meiling and D. R. Uhlmann, Phys. Chem. Glasses 8, 62 (1967);
102.(c) A. L. Renniger and D. R. Uhlmann, J. Non-Cryst. Solids 16, 325 (1974).
103.
103.(a) R. J. Roe and J. J. Curro, Macromolecules 16, 425 (1983);
103.(b) J. G. Victor and J. M. Torkelson, Macromolecules 20, 2241 (1987).
104.
104.(a) J. Schroeder, C. J. Montrose, and P. B. Macedo, J. Chem. Phys. 63, 2907 (1995);
104.(b) N. L. Laberge, V. V. Vasilescu, C. J. Montrose, and P. B. Macedo, J. Am. Ceram. Soc. 56, 506 (1973);
104.(c) J. H. Simmons and P. B. Macedo, J. Chem. Phys. 53, 2914 (1970).
105.
105.H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
106.
106.E. W. Fischer, G. P. Hellman, H. W. Spiess, F. J. Horth, U. Ecarius, and M. Wehrle, Macromol. Chem. Suppl. 12, 189 (1985).
107.
107.(a) A. Alegria, J. Colmenero, K. L. Ngai, and C. M. Roland, Macromolecules 27, 4486 (1994);
107.(b) Y. H. Chin, P. T. Inglefield, and A. A. Jones, Macromolecules 26, 5372 (1993).
108.
108.R. E. Welton, W. J. MacKnight, J. R. Fried, and F. E. Karasz, Macromolecules 11, 158 (1987).
109.
109.(a) M. H. Cohen and D. Turnbull, J. Chem. Phys. 34, 120 (1960);
109.(b) M. H. Cohen and G. Grest, Adv. Chem. Phys. 48, 370 (1981);
109.M. H. Cohen and G. Grest, Phys. Rev. B 20, 1077 (1979).
110.
110.P. Santangelo et al., J. Non-Cryst. Solids 172–174, 1084 (1994).
111.
111.P. Santangelo, C. M. Roland, K. L. Ngai, and G. Meier, Macromolecules 26, 6164 (1994).
112.
112.(a) V. V. Brazhkin, R. N. Voloshin, and S. V. Popova, Pis'ma Zh. Eksp. Teor. Fiz. 50, 392 (1989);
112.(b) V. V. Brazhkin, S. V. Popova, R. N. Voloshin, and A. G. Umnov, High Press. Res. 6, 363 (1991);
112.(c) V. V. Brazhkin, R. N. Voloshin, S. V. Popova, and A. G. Umnov, Phys. Lett. A 154, 413 (1991).
113.
113.(a) A. Ferraz and N. H. March, Phys. Chem. Liq. 8, 289 (1979);
113.(b) M. van Thiel and F. H. Rees, Phys. Rev. B 48, 3591 (1993).
114.
114.H. Endo, K. Tamura, and M. Yao, Can. J. Phys. 65, 266 (1987).
115.
115.E. G. Ponyatovsky and O. I. Barkalov, Mater. Sci. Rep. 8, 147 (1992).
116.
116.E. J. Rapoport, J. Chem. Phys. 46, 2891 (1976);
116.E. J. Rapoport, J. Chem. Phys. 48, 1433 (1968).
117.
117.(a) P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature (London) 360, 324 (1992);
117.(b) P. H. Poole, U. Essmann, F. Sciortino, and H. E. Stanley, Phys. Rev. E 48, 4605 (1993);
117.(c) P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C. A. Angell, Phys. Rev. Lett. 73, 1632 (1994);
117.(d) P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1996), Chap. 2.
118.
118.(a) O. Mishima, L. D. Calvert, and E. Whalley, Nature (London) 314, 76 (1985);
118.(b) O. Mishima, J. Chem. Phys. 100, 5910 (1994).
119.
119.(a) M. Grimsditch, Phys. Rev. Lett. 52, 2379 (1984);
119.(b) R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, Phys. Rev. Lett. 57, 747 (1986);
119.(c) Q. Williams and R. Jeanloz, Science 239, 902 (1988);
119.(d) G. H. Wolf, S. Wang, C. A. Herbst, D. J. Durben, W. F. Oliver, Z. C. Kang, and K. Halvorson, in High-Pressure Research: Application to Earth and Planetary Sciences, edited by Y. Syono and M. H. Manghnani (Terra Scientific/Am. Geophysical Union, Tokyo/Washington, D.C., 1992), p. 503.
120.
120.(a) S. Aasland and P. F. McMillan, Nature (London) 369, 633 (1994);
120.(b) P. F. McMillan, C. Ho, S. Aasland, A. Yeganeh-Haeri, and R. Weber, Mater. Res. Soc. Symp. Proc. 455, 377 (1997);
120.(c) P. F. McMillan and M. Wilding (unpublished).
121.
121.(a) W. D. Lüdke and U. Landman, Phys. Rev. B 37, 4656 (1988);
121.(b) C. A. Angell, S. Borick, and M. Grabow, J. Non-Cryst. Solids 205, 463 (1996);
121.(c) C. A. Angell, J. Phys. Chem. 97, 6339 (1993);
121.C. A. Angell, Science 267, 1924 (1995);
121.(d) C. A. Angell, P. H. Poole, and J. Shao, Nuovo Cimento D 16D, 993 (1994).
122.
122.(a) M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis, and N. G. Chew, Phys. Rev. Lett. 52, 2360 (1984);
122.(b) A. Filiponi and A. Dicicco, Phys. Rev. B 51, 12322 (1995);
122.(c) S. Ansell, S. Krishnan, J. F. Felten, and D. L. Price, J. Phys.: Condens. Matter 10, L73 (1998);
122.(d) C. A. Angell and S. Borick, J. Phys.: Condens. Matter 11, 8163 (1999).
123.
123.(a) A. Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946);
123.(b) A. Q. Tool, J. Res. Natl. Bur. Stand. 37, 73 (1946);
123.(c) O. S. Narayanasway, J. Am. Ceram. Soc. 54, 491 (1971);
123.(d) C. T. Moynihan et al., Ann. (N.Y.) Acad. Sci. 279, 15 (1976);
123.(e) A. Kovacs, J. J. Aklonis, J. M. Hutchinson, and A. R. Ramos, J. Polym. Sci., Polym. Phys. Ed. 17, 1097 (1979).
124.
124.G. W. Scherer, J. Am. Ceram. Soc. 67, 504 (1984).
125.
125.I. M. Hodge, J. Non-Cryst. Solids 169, 211 (1994).
126.
126.(a) J. D. Ferry, Viscoelastic Properties of Polymers, 3rd. ed. (Wiley, New York, 1980);
126.(b) W. N. Findley, J. S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, with an Introduction to Linear Viscoelasticity (North-Holland, New York, 1976).
127.
127.G. W. Scherer, Relaxation in Glass and Composites (Wiley, New York, 1986).
128.
128.G. B. McKenna, in Comprehensive Polymer Science, Vol. 2 Polymer Properties, edited by C. Booth and C. Price (Pergamon, Oxford, 1989), pp. 311–362.
129.
129.(a) I. M. Hodge, J. Non-Cryst. Solids 202, 164 (1996);
129.I. M. Hodge, J. Non-Cryst. Solids 131–133, 435 (1991);
129.(b) I. M. Hodge and A. R. Berens, Macromolecules 15, 756 (1982);
129.I. M. Hodge and A. R. Berens, Macromolecules 15, 762 (1982).
130.
130.A. J. Kovacs, Ann. (N.Y.) Acad. Sci. 371, 38 (1981).
131.
131.Discussion section led by G. B. McKenna and C. A. Angell, J. Non-Cryst. Solids 171–173, 528 (1991).
132.
132.S. R. Lustig, R. M. Shay, and J. M. Caruthers, J. Rheol. 40, 69 (1996).
133.
133.R. W. Rendell, C. R. Fong, K. L. Ngai, and J. J. Aklonis, Macromolecules 20, 1070 (1987).
134.
134.C. T. Moynihan, J. Non-Cryst. Solids 172–174, 1395 (1994);
134.C. T. Moynihan, J. Non-Cryst. Solids 203, 359 (1996).
135.
135.A. J. Kovacs, Fortschr. Hochpolym.-Forsch. 3, 394 (1963).
136.
136.G. B. McKenna, Y. Leterrier, and C. R. Schultheisz, Polym. Eng. Sci. 35, 403 (1995).
137.
137.L. C. E. Struik, Polymer 38, 4677 (1997).
138.
138.G. B. McKenna, M. G. Vangel, A. L. Rukhin, S. D. Leigh, B. Lotz, and C. Straupe, Polymer 40, 5183 (1999).
139.
139.I. M. Hodge, Mater. Res. Soc. Symp. Proc. 215, 10 (1991);
139.I. M. Hodge, J. Res. Natl. Inst. Stand. Technol. 102, 195 (1997).
140.
140.K. L. Ngai and R. W. Rendell, in The Physics of Non-Crystalline Solids, edited by L. D. Pye, W. C. LaCourse, and H. J. Stevens (Taylor & Francis, London, 1992), p. 309.
141.
141.(a) R. Böhmer, J. Non-Cryst. Solids 172–174, 623 (1994);
141.(b) R. Böhmer and C. A. Angell, in Disorder Effects on Relaxational Processes, edited by A. Blumen and R. Richert (Springer, Berlin, 1994), p. 11;
141.(c) R. Böhmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. 99, 4201 (1993).
142.
142.(a) H. Sasabe and C. T. Moynihan, J. Polym. Sci., Polym. Phys. Ed. 16, 1447 (1978);
142.(b) A. Weitz and B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed. 12, 2473 (1974);
142.(c) J. Perez, J. Y. Cavaille, R. D. Calleja, J. L. G. Ribelles, M. M. Pradas, and A. R. Greus, Macromol. Chem. Phys. 192, 2141 (1991).
143.
143.(a) E. F. Oleinik, Polym. J. (Tokyo) 19, 105 (1987);
143.(b) K. Adachi and T. Kotaka, Polym. J. (Tokyo) 14, 959 (1982);
143.(c) J. M. G. Cowie, S. Elliott, R. Ferguson, and R. Simha, Polym. Commun. 29, 298 (1987).
144.
144.L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, New York, 1978).
145.
145.R. J. Roe and G. M. Millman, Polym. Eng. Sci. 23, 318 (1983).
146.
146.G. B. McKenna, M. M. Santore, A. Lee, and R. S. Duran, J. Non-Cryst. Solids 131–133, 497 (1991).
147.
147.M. M. Santore, R. S. Duran, and G. B. McKenna, Polymer 32, 2377 (1991).
148.
148.G. B. McKenna, J. Non-Cryst. Solids 172–174, 756 (1994).
149.
149.G. B. McKenna, J. Res. Natl. Inst. Stand. Technol. 99, 169 (1994).
150.
150.C. R. Schultheisz, D. M. Colucci, G. B. McKenna, and J. M. Caruthers, in Mechanics of Plastics and Plastic Composites, edited by M. C. Boyce (American Society of Mechanical Engineers, 1995), p. 251.
151.
151.R. S. Duran and G. B. McKenna, J. Rheol. 34, 813 (1990).
152.
152.M. Delin, R. W. Rychwalski, J. Kubat, C. Klason, and J. M. Hutchinson, Polym. Eng. Sci. 36, 2955 (1996).
153.
153.(a) I. Echeverria, P. C. Su, S. L. Simon, and D. J. Plazek, J. Polym. Sci., Part B: Polym. Phys. 33, 2457 (1995);
153.(b) S. L. Simon, D. J. Plazek, J. W. Sobieski, and E. T. McGregor, J. Polym. Sci., Part B: Polym. Phys. 35, 929 (1997).
154.
154.(a) M. Hemmati, C. T. Moynihan, and C. A. Angell, J. Chem. Phys. (submitted);
154.(b) G. Parisi, J. Phys. Chem. 103 (1999);
154.(c) W. Kob and F. Sciortino, J. Phys. Condensed Matter 12 (2000).
155.
155.G. Rehage and G. Goldbach, Rheol. Acta 6, 30 (1967).
156.
156.J. E. McKinney and H. V. Belcher, J. Res. Natl. Bur. Stand., Sect. A 67, 43 (1963).
157.
157.D. J. Plazek, Polym. J. (Tokyo) 12, 43 (1980).
158.
158.K. L. Ngai and D. J. Plazek, Rubber Chem. Technol. 68, 376 (1995).
159.
159.O. V. Mazurin, Yu. K. Startsev, and S. V. Stoljar, J. Non-Cryst. Solids 105, 532 (1982).
160.
160.A. Alegria, E. Guerrica-Echevarria, L. Goitianda, I. Telleria, and J. Colmenero, Macromolecules 28, 1516 (1995).
161.
161.M. Oguni, J. Non-Cryst. Solids 210, 171 (1997).
162.
162.R. V. Chamberlin, R. Bohmer, E. Sanchez, and C. A. Angell, Phys. Rev. B 46, 5787 (1992).
163.
163.R. Böhmer and C. A. Angell, Phys. Rev. B 45, 10091 (1992).
164.
164.S. Takahara, O. Yamamuro, and T. Matsuo, J. Phys. Chem. 99, 9589 (1995).
165.
165.C. Liu and C. A. Angell, J. Chem. Phys. 93, 7378 (1990).
166.
166.N. F. Mott, Philos. Mag. 22, 7 (1970);
166.Metal-Insulator Transitions (Taylor and Francis, London, 1974).
167.
167.J. Kincs and S. W. Martin, Phys. Rev. Lett. 76, 70 (1995);
167.J. Kincs, M. S. thesis, Iowa State University, 1995.
168.
168.M. D. Ingram, C. A. Vincent, and A. R. Wandless, J. Non-Cryst. Solids 53, 73 (1982).
169.
169.K. L. Ngai and A. K. Rizos, Phys. Rev. Lett. 76, 1296 (1996).
170.
170.P. Maass, M. Meyer, A. Bunde, and W. Dieterich, Phys. Rev. Lett. 77, 1528 (1996).
171.
171.(a) D. Ravaine and J. L. Souquet, Phys. Chem. Glasses 18, 27 (1977);
171.(b) R. Boehmer, T. Joerg, F. Qi, and A. Titze, Chem. Phys. Lett. 316, 417 (2000).
172.
172.(a) K.-L. Ngai, Solid State Ionics 5, 27 (1981);
172.(b) S. W. Martin, Mater. Chem. Phys. 23, 225 (1989);
172.(c) C. A. Angell, Mater. Chem. Phys. 23, 143 (1989);
172.C. A. Angell, Chem. Rev. 90, 523 (1990);
172.C. A. Angell, Solid State Ionics 105, 15 (1998);
172.(d) K. L. Ngai, J. Non-Cryst. Solids 203, 232 (1996);
172.(e) K. L. Ngai and C. T. Moynihan, Bull. Mater. Res. Soc. 23, 51 (1998);
172.(f) K. L. Ngai and C. Leon, Phys. Rev. B 60, 9396 (1999).
173.
173.K. L. Ngai, J. Chem. Phys. 110, 10576 (1999).
174.
174.(a) M. Mao, Z. Altounian, and D. Ryan, J. Non-Cryst. Solids 205–207 (1996);
174.(b) K. Hoshino, R. S. Averbach, H. Hahn, and S. J. Rothman, J. Mater. Res. 3, 55 (1998);
174.(c) W. L. Johnson, Mater. Res. Soc. Bull. 24, 42 (2000).
175.
175.M. J. Pikal and S. Shah, Int. J. Pharm. 62, 165 (1990).
176.
176.(a) D. Girlich and H.-D. Lüdemann, Z. Naturforsch. C 49c, 258 (1994);
176.(b) A. Heinrich-Schramm, C. Buttersack, and H. D. Lüdemann, Carbohydrate Res. 293, 205 (1996).
177.
177.S. Roorda, W. C. Sinke, J. M. Poate, D. C. Jacobsen, S. Dierker, B. S. Dennis, D. J. Eaglesham, F. Spaepen, and P. Fuoss, Phys. Rev. B 44, 3702 (1991).
178.
178.S. Coffa, J. M. Poate, D. C. Jacobson, W. Frank, and W. Gustin, Phys. Rev. B 45, 8355 (1992).
179.
179.P. A. Stolk, S. Coffa, and J. M. Poate, in Diffusion in Amorphous Materials, edited by H. Jain and D. Gupta (The Minerals, Metals and Materials Society, 1994), p. 177: It is likely that present experimental techniques could yield data for pure and particularly for at the temperatures where they are about to crystallize, J. M. Poate (private communication).
180.
180.C. A. Angell, Annu. Rev. Phys. Chem. 43, 693 (1992).
181.
181.W. Frank, Defect Diffus. Forum 75, 121 (1991);
181.in Crucial Issues in Semiconductor Materials and Processing Technology, edited by S. Coffa, F. Priolo, E. Rimini, and J. M. Poate (Kluwer, Dordrecht, 1992), p. 383:
181.W. Frank, W. Gustin, and M. Horz, J. Non-Cryst. Solids 205–207, 208 (1996).
182.
182.(a) S. Roorda, W. C. Sinke, J. M. Poate, D. C. Jacobson, S. Dierker, B. S. Dennis, D. J. Eaglesham, F. Spaepen, and P. Fuoss, Phys. Rev. B 44, 3702 (1991);
182.(b) E. P. Donovan, F. Spaepen, J. M. Poate, and D. C. Jacobson, Appl. Phys. Lett. 55, 1516 (1989);
182.(c) E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate, and D. C. Jacobson, J. Appl. Phys. 57, 1795 (1985).
183.
183.A. Magistris, G. Chiodelli, and M. Duclot, Solid State Ionics 9/10, 611 (1983).
184.
184.L. Wu, J. Chem. Phys. 43, 9906 (1991).
185.
185.A. P. Sokolov, E. Roessler, A. Kisliuk, and D. Quitman, Phys. Rev. Lett. 71, 2062 (1993);
185.A. P. Sokolov, A. Kisliuk, D. Quitmann, A. Kudlik, and E. Roessler, J. Non-Cryst. Solids 172–174, 138 (1994).
186.
186.R. Shuker and R. W. Gammon, Phys. Rev. Lett. 25, 222 (1970).
187.
187.(a) D. J. Plazek and K. L. Ngai, Macromolecules 24, 1222 (1991);
187.(b) R. Böhmer and C. A. Angell, Phys. Rev. B 45, 1009 (1992);
187.(c) C. A. Angell, L. Monnerie, and L. M. Torell, Mater. Res. Soc. Symp. Proc. 215, 3 (1991).
188.
188.(a) D. Engberg, A. Wischnewski, U. Buchenau, L. Borjesson, A. J. Dianoux, A. P. Sokolov, and L. M. Torell, Phys. Rev. B 58, 9088 (1999);
188.(b) C. M. Roland and K. Ngai, J. Chem. Phys. 104, 2697 (1996).
189.
189.K. L. Ngai, A. P. Sokolov, and W. Steffen, J. Chem. Phys. 107, 5268 (1997).
190.
190.F. Viras and T. A. King, J. Non-Cryst. Solids 119, 65 (1990).
191.
191.J. Colmenero, A. Arbe, and A. AlegrPa, Phys. Rev. Lett. 71, 2603 (1993).
192.
192.E. Duval, T. Achibat, A. Boukenter, B. Varrel, R. Calemczuk, and B. Salce, J. Non-Cryst. Solids 190, 258 (1995).
193.
193.E. Duval, A. Boukenter, and T. Achibat, J. Phys.: Condens. Matter 2, 10227 (1990).
194.
194.K. L. Ngai (unpublished, 1995).
195.
195.K. L. Ngai, Macromolecules 24, 4865 (1991).
196.
196.V. N. Novikov and A. P. Sokolov, Solid State Commun. 77, 243 (1991).
197.
197.A. J. Martin and W. Brenig, Phys. Status Solidi 64, 163 (1974).
198.
198.S. R. Elliott, Europhys. Lett. 19, 210 (1992).
199.
199.M. Foley, M. Wilson, and P. A. Madden, Philos. Mag. B 71, 557 (1995).
200.
200.(a) L. Borjesson, A. K. Hassan, J. Swenson, and L. M. Torell, Phys. Rev. Lett. 70, 1275 (1991);
200.(b) L. Borjesson, A. K. Hassan, J. Swenson, and L. M. Torell, Phys. Rev. Lett. 70, 4027 (1993).
201.
201.V. K. Malinovsky, V. N. Novikov, P. P. Parshin, A. P. Sokolov, and M. G. Zemlyanov, Europhys. Lett. 11, 43 (1990).
202.
202.J. E. Graebner, B. Golding, and J. C. Allen, Phys. Rev. B 34, 5696 (1986).
203.
203.V. L. Gurevich, D. A. Parshin, J. Pelous, and H. R. Schober, Phys. Rev. B 48, 16318 (1993).
204.
204.R. J. Roe, J. Chem. Phys. 100, 1610 (1994).
205.
205.A. V. Granato, Physica B 219&220, 270 (1996).
206.
206.(a) K. Smith, G. H. Wolf, and P. F. McMillan (unpublished);
206.(b) C. Polsky, M. Verhelst, and G. H. Wolf (unpublished);
206.(c) J. Shao and C. A. Angell, Proc. XVIIth Internat. Congress on Glass 1995, edited by Gong Fanglian (International Academic Publishers, Beijing, 1995), Vol. 1, p. 311;
206.(d) C. A. Angell, Comput. Mater. Sci. 4, 285 (1995).
207.
207.J. Horbach, W. Kob, K. Binder, and C. A. Angell, Phys. Rev. Rapid Pub. E 54, 5897 (1996).
208.
208.J. Horbach, W. Kob, and K. Binder, Neutrons and Numerical Methods, edited by M. R. Johnson, G. J. Kearley, and H. J. Büttner, AIP Conference Proceedings 479 (AIP, Woodbury, 1999), p. 131.
209.
209.A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Phys. Rev. B 52, R9815 (1995).
210.
210.G. Winterling, Phys. Rev. B 12, 2432 (1975);
210.V. Z. Godhiyaev et al., Philos. Mag. B 63, 777 (1991);
210.A. P. Sokolov et al., J. Non-Cryst. Solids 172–174, 138 (1994).
211.
211.J. Colmenero, A. Arbe, and A. Algeria, Phys. Rev. Lett. 71, 2603 (1993).
212.
212.(a) K. L. Ngai, J. Colmenero, A. Algeria, and A. Arbe, Macromolecules 25, 6727 (1992);
212.(b) C. M. Roland and K. L. Ngai, J. Chem. Phys. 104, 2967 (1996).
213.
213.This is best seen in the vs t behavior discussed in the next section. In molecular dynamic studies of ionic glasses like the linear increase in vs t which appears as a Debye relaxation in the fragile liquid studies (194) develop dips which can be exaggerated by artificially manipulating the ionic masses to exaggerate the difference between cations and anions [J. Shao (unpublished)].
214.
214.U. Buchenau and R. Zorn, Europhys. Lett. 18, 523 (1992).
215.
215.F. A. Lindemann, Phys. Z. 11, 609 (1911).
216.
216.B. Frick and D. Richter, Phys. Rev. B 47, 14795 (1993).
217.
217.(a) W. Doster, S. Cusak, and W. Petry, Nature (London) 337, 754 (1989);
217.(b) F. Parak, J. Heidemeier, and G. U. Nienhaus, Hyperfine Interact. 40, 147 (1988).
218.
218.A. Petry et al., Phys. B. Condens. Mater. 83, 175 (1991).
219.
219.(a) H. Kawamura et al., Solid State Commun. 43, 229 (1982);
219.(b) V. K. Malinovsky and A. P. Sokolov, Solid State Commun. 57, 757 (1986);
219.(c) V. Z. Gochiyaev and A. P. Sokolov, Sov. Phys. Solid State 31, 557 (1989);
219.(d) S. L. Isakov, S. N. Ishmaev, V. K. Malinovsky, V. N. Novikov, P. P. Parshin, S. N. Popov, A. P. Sokolov, and M. G. Zemlyanov, Solid State Commun. 86, 123 (1993).
220.
220.(a) M. Elmroth, L. Borjesson, and L. M. Torrell, Phys. Rev. Lett. 68, 79 (1992);
220.(b) D. Engberg, L. Borjesson, J. Swensson, L. M. Torrell, W. S. Howells, and A. Wannberg, Europhysics 47, 213 (1999).
221.
221.(a) G. Li, M. Fuchs, W. M. Du, A. Latz, N. J. Tao, J. Hernandez, W. Gotze, and H. Z. Cummins, J. Non-Cryst. Solids 172–174, 43 (1994);
221.(b) W. M. Du, G. Li, H. Z. Cummins, M. Fuchs, J. Toulouse, and L. A. Knauss, Phys. Rev. E 49, 2192 (1994).
222.
222.Y. Yang and K. A. Nelson, ACS Symp. Ser. 676, 181 (1997).
223.
223.S. R. Nagel, G. S. Grest, and A. Rahman, Phys. Rev. Lett. 53, 368 (1984).
224.
224.B. B. Laird and H. R. Schober, Phys. Rev. Lett. 66, 636 (1991).
225.
225.L. D. Van Ee, B. J. Thijsse, and J. Sietsma, J. Non-Cryst. Solids 205–207, 641 (1997).
226.
226.V. Mazzacurati, G. Ruocco, and M. Sampoli, Europhys. Lett. 34, 681 (1996).
227.
227.(a) P. Lunkenheimer, Dielectric Spectroscopy of Glassy Dynamics (Shaker, Aachen, 1999), and additional references cited below;
227.(b) P. Lunkenheimer, U. R. Brand, and A. Loidl, Contemp. Phys. 41, 15 (2000).
228.
228.F. Sette, M. Krisch, C. Masciovecchio, G. Ruocco, and G. Monaco, Science 280, 1550 (1998).
229.
229.H. Wagner and R. Richert, Polymer 38, 255 (1997).
230.
230.R. H. Colby, Phys. Rev. E 61, 1783 (2000).
231.
231.R. Richert, Physica (in press).
232.
232.P. C. Taylor, S. G. Bishop, and D. L. Mitchell, Phys. Rev. Lett. 27, 414 (1971).
233.
233.C. A. Angell, L. Boehm, M. Oguni, and D. L. Smith, J. Mol. Liquids 56, 275 (1993).
234.
234.J. Barthel, K. Bachhuber, R. Buchner, J. B. Gill, and M. Kleebauer, Chem. Phys. Lett. 167, 62 (1990).
235.
235.P. Lunkenheimer, P. Pimenov, B. Schiener, R. Böhmer, and A. Loidl, Europhys. Lett. 33, 611 (1996).
236.
236.P. Lunkenheimer, A. Pimenov, and A. Loidl, Phys. Rev. Lett. 78, 2995 (1997).
237.
237.(a) P. Lunkenheimer, A. Pimenov, M. Dressel, B. Gorshunov, U. Schneider, B. Schiener, and A. Loidl, in Supercooled Liquids, Advances and Novel Applications, edited by J. T. Fourkas et al., ACS Symposium Series, Vol. 676 (American Chemical Society, Washington, DC, 1997), p. 168;
237.(b) P. Lunkenheimer, A. Pimenov, M. Dressel, B. Gorshunov, U. Schneider, B. Schiener, R. Böhmer, and A. Loidl, in Structure and Dynamics of Glasses and Glass Formers, edited by C. A. Angell et al., MRS Symposium Proceedings, Vol. 455 (Material Research Society, Pittsburgh, 1997), p. 47.
238.
238.(a) U. Schneider, P. Lunkenheimer, R. Brand, and A. Loidl, J. Non-Cryst. Solids 235–237, 173 (1998);
238.(b) U. Schneider, P. Lunkenheimer, R. Brand, and A. Loidl, Phys. Rev. E 59, 6924 (1999);
238.(c) P. Lunkenheimer, R. Brand, U. Schneider, and A. Loidl, Philos. Mag. 79, 1945 (1999).
239.
239.(a) A. A. Volkov, Yu. G. Goncharov, G. V. Kozlov, S. P. Lebedev, and A. M. Prokhorov, Infrared Phys. 25, 369 (1985);
239.(b) A. A. Volkov, G. V. Kozlov, S. P. Lebedev, and A. M. Prokorov, Infrared Phys. 29, 747 (1989).
240.
240.(a) See Fig. 1(e) of Ref. 240(b) based on data from M. Kruger, M. Soltwisch, I. Petscherizin, and D. Quitmann, J. Chem. Phys. 96, 7352 (1992);
240.(b) C. A. Angell, J. Phys. Condensed Matter 12, 1 (2000);
240.(c) A. P. Sokolov, J. Non-Cryst. Solids 235–237, 190 (1998).
241.
241.(a) A. P. Sokolov, R. Calemczuk, B. Salce, A. Kisliuk, D. Quitmann, and E. Duval, Phys. Rev. Lett. 78, 2405 (1997);
241.(b) A. P. Sokolov, V. N. Novikov, and B. Strube, Phys. Rev. B 56, 5042 (1997).
242.
242.A. P. Sokolov, Philos. Mag. 77, 349 (1998);
242.A. P. Sokolov, J. Phys. Condensed Matter 11, A213 (1999).
243.
243.(a) H. Z. Cummins, G. Li, W. M. Du, J. Hernandez, and N. Z. Tao, J. Phys. Condensed Matter 6, A52 (1994);
243.(b) H. Z. Cummins, J. Hernandez, W. M. Du, and G. Li, Phys. Rev. Lett. 73, 2936 (1994);
243.(c) H. Z. Cummins, J. Phys. Condensed Matter 11, A95 (1999).
244.
244.(a) N. V. Surovtsev, J. A. H. Wiedersich, V. N. Novikov, E. Rössler, and A. P. Sokolov, Phys. Rev. B 58, 14888 (1998);
244.(b) J. Gapinski, W. Steffen, A. Patkowski, A. P. Sokolov, A. Kisliuk, U. Buchenau, M. Russina, F. Mezei, and H. Schober, J. Chem. Phys. 110, 2312 (1999);
244.(c) H. C. Barshilia, G. Li, G. Q. Shen, and H. Z. Cummins, Phys. Rev. E 59, 5625 (1999).
245.
245.(a) R. Casalini, K. L. Ngai, and C. M. Roland, J. Chem. Phys. 112, 5181 (2000);
245.(b) K. L. Ngai, J. Non-Cryst. Solids (in press, 2000);
245.(c) R. Casalini and K. L. Ngai, J. Non-Cryst. Solids (submitted).
246.
246.A. P. Sokolov and A. Kisluik, J. Polym. Sci. Poly. Phys. Ed. (in press).
247.
247.(a) J.-B. Suck, in Dynamics of Disordered Materials, edited by D. Richter, A. J. Dianoux, W. Petry, and J. Texeira (Springer, Berlin, 1989), p. 182;
247.J.-B. Suck, J. Non-Cryst. Solids (to be published, 2001).
248.
248.N. N. Ovysuk and N. V. Novikov, Phys. Rev. B 57, 14615 (1998).
249.
249.(a) F. Sette, G. Ruocco, M. Krisch, U. Bergmann, C. Masciovecchio, M. Mazzacurati, G. Signorelli, and R. Verbeni, Phys. Rev. Lett. 75, 850 (1995);
249.(b) G. Rucco, F. Sette, U. Bergman, M. Krisch, C. Masciovecchio, V. Mazzacurati, G. Signorelli, and R. Verbeni, Nature (London) 379, 521 (1996);
249.(c) C. Masciovecchio, U. Bergmann, M. Krisch, G. Ruocco, F. Sette, and R. Verbeni, Nucl. Instrum. Methods Phys. Res. 111, 181 (1996).
250.
250.P. Benassi, M. Krisch, C. Masciovecchio, V. Mazzucurati, G. Monaco, G. Ruocco, F. Sette, and R. Verbeni, Phys. Rev. Lett. 77, 3835 (1996).
251.
251.(a) G. Monaco, C. Masciovecchio, G. Ruocco, and F. Sette, Phys. Rev. Lett. 80, 544 (1998);
251.(b) C. Masciovecchio, G. Monaco, G. Ruocco, and F. Sette, Phys. Rev. Lett. 80, 2161 (1998).
252.
252.(a) A. Matic, G. Ruocco, C. Masciovecchio, A. Mermet, F. Sette, and R. Verbeni, Phys. Rev. Lett. (submitted);
252.(b) D. Fioretti, U. Buchenau, L. Comez, A. P. Sokolov, C. Masciovecchio, A. Mermet, G. Ruocco, F. Sette, L. Willner, B. Frick, D. Richter, and L. Verdini, Phys. Rev. E 59, 4470 (1999).
253.
253.A. P. Sokolov, J. Phys. Condensed Matter 11, A213218 (1999);
253.A. P. Sokolov, Philos. Mag. 77, 349 (1998).
254.
254.V. N. Novikov, Physica B 263–264, 343 (1999);
254.V. N. Novikov, J. Non-Cryst. Solids 235–237, 196 (1998).
255.
255.C. A. Angell, J. Am. Ceram. Soc. 51, 117 (1968).
256.
256.A. P. Sokolov, U. Buchenau, D. Richter, C. Masciovecchio, F. Sette, A. Mermet, D. Fioretto, G. Ruocco, L. Willner, and B. Frick, Phys. Rev. E 60, R2464 (1999).
257.
257.(a) M. Sampoli, G. Ruocco, and F. Sette, Phys. Rev. Lett. 79, 1678 (1997);
257.(b) F. Sciortino and S. Sastry, J. Chem. Phys. 100, 3881 (1994).
258.
258.G. Monaco, A. Cunsolo, G. Ruocco, and F. Sette, Phys. Rev. E 60, 5505 (1999).
259.
259.W. M. Slie, A. R. Donfor, Jr., and T. A. Litovitz, J. Chem. Phys. 44, 3712 (1966).
260.
260.C. A. Angell, Annu. Rev. Phys. Chem. 34, 593 (1983).
261.
261.R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1976).
262.
262.G. Monaco, C. Masciovecchio, G. Ruocco, and F. Sette, Phys. Rev. Lett. 80, 2161 (1998).
http://aip.metastore.ingenta.com/content/aip/journal/jap/88/6/10.1063/1.1286035
Loading
/content/aip/journal/jap/88/6/10.1063/1.1286035
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/88/6/10.1063/1.1286035
2000-09-15
2016-09-27
Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/88/6/10.1063/1.1286035&pageURL=http://scitation.aip.org/content/aip/journal/jap/88/6/10.1063/1.1286035'
Right1,Right2,Right3,