Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/89/10/10.1063/1.1361065
1.
1.T. Hori, Gate Dielectrics and MOS ULSIs (Springer, New York, 1997).
2.
2.R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, J. IEEE SC–9, 256 (1974).
3.
3.G. Baccarani, M. R. Wordeman, and R. H. Dennard, IEEE Trans. Electron Devices 31, 452 (1984).
4.
4.P. A. Packan, Science 285, 2079 (1999).
5.
5.See The International Technology Roadmap for Semiconductors, Semiconductor Industry Association; see also http: //public.itrs.net/ for the most recent updates (1999).
6.
6.R. Rios and N. D. Arora, Tech. Dig. Int. Electron Devices Meet. 1994, 613 (1994).
7.
7.The relative permittivity of a material is often given by ε or such as with the expression The relation between κ and ε varies depending on the choice of units (e.g., when ), but since it is always the case that in this review we use the definition
8.
8.A. Chatterjee, M. Rodder, and I-C. Chen, IEEE Trans. Electron Devices 45, 1246 (1998).
9.
9.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
10.
10.E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).
11.
11.G. Lucovsky (private communication).
12.
12.D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature (London) 399, 758 (1999);
12.D. A. Muller, “Characterization and Metrology for ULSI Technology,” Intl. Conf. 2000, edited by D. G. Seiler, A. C. Diebold, T. J. Shaffner, R. McDonald, W. M. Bullis, P. J. Smith, and E. M. Secula, p. 500.
13.
13.S. Tang, R. M. Wallace, A. Seabaugh, and D. King-Smith, Appl. Surf. Sci. 135, 137 (1998).
14.
14.J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rev. Lett. 85, 1298 (2000).
15.
15.A. A. Demkov and O. F. Sankey, Phys. Rev. Lett. 83, 2038 (1999).
16.
16.J. L. Alay and M. Hirose, J. Appl. Phys. 81, 1606 (1997).
17.
17.B. Brar, G. D. Wilk, and A. C. Seabaugh, Appl. Phys. Lett. 69, 2728 (1996).
18.
18.Z. H. Lu, J. P. McCaffrey, B. Brar, G. D. Wilk, R. M. Wallace, L. C. Feldman, and S. P. Tay, Appl. Phys. Lett. 71, 2764 (1997).
19.
19.H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S.-I. Nakamura, M. Saito, and H. Iwai, IEEE Trans. Electron Devices 43, 1233 (1996).
20.
20.G. Timp, A. Agarwal, F. H. Baumann, T. Boone, M. Buonanno, R. Cirelli, V. Donnelly, M. Foad, D. Grant, M. Green et al., Tech. Dig. Int. Electron Devices Meet. 1997, p. 930.
21.
21.G. Timp, K. K. Bourdelle, J. E. Bower, F. H. Baumann, T. Boone, R. Cirelli, K. Evans-Lutterodt, J. Garno, A. Ghetti, H. Gossmann et al., Tech. Dig. Int. Electron Devices Meet. 1998, p. 615.
22.
22.G. Timp, J. Bude, K. K. Bourdelle, J. Garno, A. Ghetti, H. Gossmann, M. Green, G. Forsyth, Y. Kim, R. Kleimann et al., Tech. Dig. Int. Electron Devices Meet. 1999, p. 55.
23.
23.B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.-R. Lin, VLSI Tech. Dig. 2000, p. 90.
24.
24.T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi, and M. Bohr, Tech. Dig. VLSI Symp. 2000, p. 174; R. R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy, and G. Dewey, Tech. Int. Electron Devices Meet. 2000, p. 45.
25.
25.B. E. Weir, P. J. Silverman, M. A. Alam, F. Baumann, D. Monroe, A. Ghetti, J. D. Bude, G. L. Timp, A. Hamad, T. M. Oberdick et al., Tech. Dig. Int. Electron Devices Meet. 1999, p. 437.
26.
26.H. Iwai, H. S. Momose, and S. Ohmi, Proc.-Electrochem. Soc. 2000-2, p. 3.
27.
27.J. H. Stathis and D. J. DiMaria, Tech. Dig. Int. Electron Devices Meet. 1998, p. 167;
27.J. H. Stathis and D. J. DiMaria, Appl. Phys. Lett. 71, 3230 (1997).
28.
28.C. Hu, Tech. Dig. Int. Electron Devices Meet. 1996, p. 319.
29.
29.Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and H.-S. P. Wong, Proc. IEEE 85, 486 (1997).
30.
30.M. Alam, B. Weir, P. Silverman, J. Bude, A. Ghetti, Y. Ma, M. M. Brown, D. Hwang, and A. Hamad, Proc.-Electrochem. Soc. 2000-2, p. 365.
31.
31.J. H. Stahis, A. Vayshenker, P. R. Varekamp, E. Y. Yu, C. Montrose, J. McKenna, D. J. DiMaria, L.-K. Han, E. Cartier, R. A. Wachnik, and B. P. Linder, Tech. Dig. VLSI Symp. 2000, p. 94.
32.
32.D. A. Buchanan, IBM J. Res. Dev. 43, 245 (1999);
32.J. H. Stathis and D. J. DiMaria, Microelectron. Eng. 48, 395 (1999).
33.
33.P. E. Nicollian, W. R. Hunter, and J. Hu, Tech. Dig. IRPS Symp. 2000, p. 7.
34.
34.E. Wu, E. Nowack, L. Han, D. Dufresne, and W. Abadeer, Tech. Dig. Int. Electron Devices Meet. 1999, p. 441.
35.
35.B. E. Weir, M. A. Alam, J. D. Bude, P. J. Silverman, A. Ghetti, F. Baumann, P. Diodato, D. Monroe, T. Sorsch, g. L. Timp, Y. Ma, M. M. Brown et al., Semicond. Sci. Technol. 15, 455 (2000).
36.
36.M. Alam, J. Bude, and A. Ghetti, Tech. Dig. IRPS Symp., 2000, p. 21.
37.
37.R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, Tech. Dig. Int. Electron Devices Meet. 1995, p. 863.
38.
38.R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, Ph. Roussel, and H. E. Maes, IEEE Trans. Electron Devices 45, 904 (1998).
39.
39.M. A. Alam, B. E. Weir, J. D. Bude, P. J. Silverman, and D. Monroe, Tech. Dig. Int. Electron Devices Meet. 1999, p. 449.
40.
40.D. J. DiMaria and J. H. Stathis, Appl. Phys. Lett. 74, 1752 (1999);
40.D. J. DiMaria and J. H. Stathis, Proc.-Electrochem. Soc. 2000-2, p. 33.
41.
41.J. H. Stathis, J. Appl. Phys. 86, 5757 (1999).
42.
42.A. I. Kingon, J. P. Maria, and S. K. Streiffer, Nature (London) 406, 1032 (2000).
43.
43.M. Cao, P. V. Voorde, M. Cox, and W. Greene, IEEE Electron Device Lett. 19, 291 (1998).
44.
44.J. Sapjeta, T. Boone, J. M. Rosamilia, P. J. Silverman, T. W. Sorsch, G. Timp, and B. E. Weir, Mater. Res. Soc. Symp. Proc. 477, 203 (1997).
45.
45.G. D. Wilk, Y. Wei, H. Edwards, and R. M. Wallace, Appl. Phys. Lett. 70, 2288 (1997).
46.
46.G. Lucovsky, A. Banerjee, B. Hinds, B. Clafflin, K. Koh, and H. Yang, J. Vac. Sci. Technol. B 15, 1074 (1997).
47.
47.G. D. Wilk and B. Brar, IEEE Electron Device Lett. 20, 132 (1999).
48.
48.Y. Wei, R. M. Wallace, and A. C. Seabaugh, Appl. Phys. Lett. 69, 1270 (1996).
49.
49.Y. Wei, R. M. Wallace, and A. C. Seabaugh, J. Appl. Phys. 81, 6415 (1997).
50.
50.S. Tang, Y. Wei, and R. M. Wallace, Surf. Sci. Lett. 387, L1057 (1997).
51.
51.S. V. Hattangady, R. Kraft, D. T. Grider, M. A. Douglas, G. A. Brown, P. A. Tiner, J. W. Kuehne, P. E. Nicollian, and M. F. Pas, Tech. Dig. Int. Electron Devices Meet. 1996, p. 495.
52.
52.Y. Wu and G. Lucovsky, IEEE Electron Device Lett. 19, 367 (1998).
53.
53.X. W. Wang, Y. Shi, and T. P. Ma, Tech. Dig. VLSI Symp. 1995, p. 109.
54.
54.K. A. Ellis and R. A. Buhrman, Appl. Phys. Lett. 74, 967 (1999).
55.
55.K. A. Ellis and R. A. Buhrman, J. Electrochem. Soc. 145, 2068 (1998).
56.
56.H. Yang and G. Lucovsky, Tech. Dig. Int. Electron Devices Meet. 1999, p. 245.
57.
57.V. Misra, H. Lazar, M. Kulkarni, Z. Wang, G. Lucovsky, and J. R. Hauser, Mater. Res. Soc. Symp. Proc. 567, 89 (1999).
58.
58.G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips, Appl. Phys. Lett. 74, 2005 (1999).
59.
59.S. C. Song, H. F. Luan, Y. Y. Chen, M. Gardner, J. Fulford, M. Allen, and D. L. Kwong, Tech. Dig. Int. Electron Devices Meet. 1998, p. 373.
60.
60.X. Guo and T. P. Ma, IEEE Electron Device Lett. 19, 207 (1998).
61.
61.S. Song, W. S. Kim, J. S. Lee, T. H. Choe, J. K. Choi, M. S. Kang, U. I. Chung, N. I. Lee, K. Fujihara, H. K. Kang et al., Tech. Dig. VLSI Symp. 2000, p. 190.
62.
62.J. M. Hergenrother, D. Monroe, F. P. Klemens, A. Kornblit, G. R. Weber, W. M. Mansfield, M. R. Baker, F. H. Baumann, K. J. Bolan, J. E. Bower et al., Tech. Dig. Int. Electron Devices Meet. 1999, p. 75.
63.
63.S.-H. Oh, J. M. Hergenrother, T. Nigam, D. Monroe, F. P. Klemens, A. Kornblit, W. M. Mansfield, M. R. Baker, D. L. Barr, F. H. Baumann et al., Tech. Dig. Int. Electron Devices Meet. 2000, p. 65.
64.
64.L. Risch, W. H. Krautschneider, F. Hofmann, H. Schäfer, T. Aeugle, and W. Rösner, IEEE Trans. Electron Devices 43, 1495 (1996).
65.
65.C. P. Auth and J. D. Plummer, IEEE Device Res. Conf. Tech. Dig. 1996, p. 108.
66.
66.H.-S. P. Wong, K. K. Chan, and Y. Taur, Tech. Dig. Int. Electron Devices Meet. 1997, p. 427.
67.
67.D. Hisamoto, T. Kaga, and E. Takeda, IEEE Trans. Electron Devices 38, 1419 (1991).
68.
68.X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano et al., Tech. Dig. Int. Electron Devices Meet. 1999, p. 67.
69.
69.A. Chatterjee, R. A. Chapman, K. Joyner, M. Otobe, S. Hattangady, M. Bevan, G. A. Brown, H. Yang, Q. He, D. Rogers et al., Tech. Dig. Int. Electron Devices Meet. 1998, p. 777.
70.
70.P. K. Roy and I. C. Kizilyalli, Appl. Phys. Lett. 72, 2835 (1998).
71.
71.I. C. Kizilyalli, R. Y. S. Huang, and P. K. Roy, IEEE Electron Device Lett. 19, 423 (1998).
72.
72.Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, Y.-C. King, T.-J. King, C. Hu, IEEE Electron Device Lett. 19, 341 (1998).
73.
73.D. Park, Y.-C. King, Q. Lu, T.-J. King, C. Hu, A. Kalnitsky, S.-P. Tay, and C.-C. Cheng, IEEE Electron Device Lett. 19, 441 (1998).
74.
74.H. F. Luan, B. Z. Wu, L. G. Kang, B. Y. Kim, R. Vrtis, D. Roberts, and D. L. Kwong, Tech. Dig. Int. Electron Devices Meet. 1998, p. 609.
75.
75.G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, Appl. Phys. Lett. 73, 1517 (1998).
76.
76.Y. Nishioka, N. Homma, H. Shinriki, K. Mukai, K. Yamaguchi, A. Yuchida, K. Higeta, and K. Ogiue, IEEE Trans. Electron Devices ED–34, 1957 (1987);
76.Y. Nishioka, H. Shinriki, and K. Mukai, J. Appl. Phys. 61, 2335 (1987).
77.
77.C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, Mater. Sci. Eng., R. 22, 269 (1998).
78.
78.R. M. Fleming, D. V. Lang, C. D. W. Jones, M. L. Steigerwald, D. W. Murphy, G. B. Alers, Y. H. Wong, R. B. van Dover, J. R. Kwo, and A. M. Sergent, J. Appl. Phys. 88, 850 (2000).
79.
79.R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998).
80.
80.R. A. McKee, F. J. Walker, and M. F. Chisholm, Mater. Res. Soc. Symp. Proc. 567, 415 (1999).
81.
81.Z. Yu, R. Droopad, J. Ramdani, J. A. Curless, C. D. Overgaard, J. M. Finder, K. W. Eisenbeiser, J. Wang, J. A. Hallmark, and W. J. Ooms, Mater. Res. Soc. Symp. Proc. 567, 427 (1999).
82.
82.K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, Appl. Phys. Lett. 76, 1324 (2000).
83.
83.Z. Yu, J. Ramdani, J. A. Curless, J. M. Finder, C. D. Overgaard, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, W. J. Ooms, J. R. Conner, and V. S. Kaushik, J. Vac. Sci. Technol. B 18, 1653 (2000).
84.
84.Z. Yu, J. Ramdani, J. A. Curless, C. D. Overgaard, J. M. Finder, R. Droopad, K. W. Eisenbeiser, J. A. Hallmark, W. J. Ooms, and V. S. Kaushik, J. Vac. Sci. Technol. B 18, 2139 (2000).
85.
85.T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hedge, I. J. R. Baumvol, and G. N. Parsons, Appl. Phys. Lett. 75, 4001 (1999).
86.
86.L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris et al., Tech. Dig. Int. Electron Devices Meet. 1998, p. 605.
87.
87.E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000).
88.
88.A. Chin, C. C. Liao, C. H. Liu, W. J. Chen, and C. Tsai, Tech. Dig. VLSI Symp. 1999, p. 135.
89.
89.A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, Tech. Dig. VLSI Symp. 2000, p. 16.
90.
90.D.-G. Park, H.-J. Cho, C. Lim, I.-S. Yeo, J.-S. Roh, C.-T. Kim, and J.-M. Hwang, Tech. Dig. VLSI Symp. 2000, p. 46.
91.
91.D. A. Buchanan, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha et al., Tech. Dig. Int. Electron Devices Meet. 2000, p. 223.
92.
92.J. H. Lee, K. Koh, N. I. Lee, M. H. Cho, Y. K. Kim, J. S. Jeon, K. H. Cho, H. S. Shin, M. H. Kim, K. Fujihara et al., Tech. Dig. Int. Electron Devices Meet. 2000, p. 645.
93.
93.J. Kolodzey, E. A. Chowdhury, G. Qui, J. Olowolafe, C. P. Swann, K. M. Unruh, J. Suehle, R. G. Wilson, and J. M. Zavada, Appl. Phys. Lett. 71, 3802 (1997).
94.
94.See, for example, R. M. Wallace and Y. Wei, J. Vac. Sci. Technol. B 17, 970 (1999), and references therein.
95.
95.H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
96.
96.L. Manchanda and M. Gurvitch, IEEE Electron Device Lett. 9, 180 (1988).
97.
97.M. Gurvitch, L. Manchanda, and J. M. Gibson, Appl. Phys. Lett. 51, 919 (1987).
98.
98.J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130 (2000).
99.
99.S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Borjarczuk, and M. A. Copel, Appl. Phys. Lett. 77, 2710 (2000).
100.
100.J. J. Chambers and G. N. Parsons, Appl. Phys. Lett. 77, 2385 (2000).
101.
101.H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, Tech. Dig. Int. Electron Devices Meet. 2000, 653 (2000).
102.
102.S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsich, H. S. Kim, W. L. Gladfelter, and J. H. Yan, IEEE Trans. Electron Devices 44, 104 (1997).
103.
103.C. J. Taylor, D. C. Gilmer, D. Colombo, G. D. Wilk, S. A. Campbell, J. Roberts, and W. L. Gladfelter, J. Am. Chem. Soc. 121, 5220 (1999).
104.
104.D. C. Gilmer, D. G. Colombo, C. J. Taylor, J. Roberts, G. Haustad, S. A. Campbell, H.-S. Kim, G. D. Wilk, M. A. Gribelyuk, and W. L. Gladfelter, Chem. Vap. Deposition 4, 9 (1998).
105.
105.B. He, T. Ma, S. A. Campbell, and W. L. Gladfelter, Tech. Dig. Int. Electron Devices Meet. 1998, 1038 (1998).
106.
106.X. Guo, X. Wang, Z. Luo, T. P. Ma, and T. Tamagawa, Tech. Dig. Int. Electron Devices Meet. 1999, p. 137.
107.
107.Y. Ma, Y. Ono, and S. T. Hsu, Mater. Res. Soc. Symp. Proc. 567, 355 (1999).
108.
108.C. Hobbs, R. Hedge, B. Maiti, H. Tseng, D. Gilmer, P. Tobin, O. Adetutu, F. Huang, D. Weddington, R. Nagabushnam et al., Tech. Dig. VLSI Symp. 1999, p. 133.
109.
109.R. B. van Dover, Appl. Phys. Lett. 74, 3041 (1999).
110.
110.M. Balog, M. Schieber, S. Patai, and M. Michman, J. Cryst. Growth 17, 298 (1972);
110.M. Balog, M. Schieber, M. Michman, and S. Patai, Thin Solid Films 41, 247 (1977);
110.M. Balog, M. Schieber, M. Michman, and S. Patai, Thin Solid Films 47, 109 (1977);
110.M. Balog, M. Schieber, M. Michman, and S. Patai, J. Elec. Chem. Soc. 126, 1203 (1979).
111.
111.J. Shappir, A. Anis, and I. Pinsky, IEEE Trans. Electron Devices ED-33, 442 (1986).
112.
112.A. Kumar, D. Rajdev, and D. L. Douglass, J. Am. Chem. Soc. 55, 439 (1972).
113.
113.M. Copel, M. A. Gribelyuk, and E. Gusev, Appl. Phys. Lett. 76, 436 (2000).
114.
114.W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, Tech. Dig. Int. Electron Devices Meet. 1999, p. 145.
115.
115.W.-J. Qi, R. Nieh, B. H. Lee, K. Onishi, L. Kang, Y. Jeon, J. C. Lee, V. Kaushik. B.-Y. Nguyen, L. Prabhu et al., Tech. Dig. VLSI Symp. 2000, p. 40.
116.
116.C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, Tech. Dig. Int. Electron Devices Meet. 2000, p. 27.
117.
117.T. Ngai, W.-J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee, and S. Banerjee, Appl. Phys. Lett. 76, 502 (2000).
118.
118.M. Houssa, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, Appl. Phys. Lett. 77, 1885 (2000).
119.
119.M. Houssa, M. Tuominen, M. Naili, V. Afanas’ev, A. Stesmans, S. Haukka, and M. M. Heyns, J. Appl. Phys. 87, 8615 (2000).
120.
120.R. C. Smith, N. Hoilien, C. J. Taylor, T. Z. Ma, S. A. Campbell, J. T. Roberts, M. Copel, D. A. Buchanan, M. Gribelyuk, and W. L. Gladfelter, J. Electrochem. Soc. 147, 3472 (2000).
121.
121.H. Zhang, R. Solanki, B. Roberds, G. Bai, and I. Banerjee, J. Appl. Phys. 87, 1921 (2000).
122.
122.B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, Tech. Dig. Int. Electron Devices Meet. 1999, p. 133;
122.B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, Tech. Dig. Int. Electron Devices Meet. 2000, p. 39.
123.
123.B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).
124.
124.L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, IEEE Electron Device Lett. 21, 181 (2000).
125.
125.L. Kang, K. Onishi, Y. Jeon, B. H. Lee, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J. C. Lee, Tech. Dig. Int. Electron Devices Meet. 2000, p. 35.
126.
126.S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, Tech. Dig. Int. Electron Devices Meet. 2000, p. 31.
127.
127.C. M. Perkins, B. B. Triplett, P. C. McIntyre, K. C. Saraswat, S. Haukka, and M. Tuominen (unpublished).
128.
128.A. H. Edwards, Phys. Rev. B 44, 1832 (1991).
129.
129.V. V. Afanas’ev and A. Stesmans, Phys. Rev. Lett. 80, 5176 (1998).
130.
130.From W. T. Adams in Zirconium and Hafnium, A Chapter from Mineral Facts and Problems (U.S. Dept. of Interior, Bureau of Mines Preprint from Bulletin 675, U.S. Govt. Printing Office, Washington, D.C., 1985), pp. 946–947.
131.
131.B. E. Gnade and R. M. Wallace (private communication).
132.
132.J. F. Ziegler, IBM J. Res. Dev. 40, 19 (1996).
133.
133.M. A. Russack, C. V. Jahnes, and E. P. Katz, J. Vac. Sci. Technol. A 7, 1248 (1989).
134.
134.S. Roberts, J. G. Ryan, and D. W. Martin, in Emerging Semiconductor Technology, ASTM STP 960, edited by D. C. Gupta and P. H. Langer (ASTM, Philadelphia, 1986), p. 137.
135.
135.G. D. Wilk and R. M. Wallace, Appl. Phys. Lett. 74, 2854 (1999).
136.
136.G. D. Wilk and R. M. Wallace, Appl. Phys. Lett. 76, 112 (2000).
137.
137.G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000).
138.
138.T. Yamaguchi, H. Satake, N. Fukushima, and A. Toriumi, Tech. Dig. Int. Electron Devices Meet. 2000, p. 19.
139.
139.Y. Ma, Y. Ono, L. Stecker, D. R. Evans, and S. T. Hsu, Tech. Dig. Int. Electron Devices Meet. 1999, p. 149.
140.
140.L. Manchanda, M. L. Green, R. B. van Dover, M. D. Morris, A. Kerber, Y. Hu, J. P. Han, P. J. Silverman, T. W. Sorsch, G. Weber et al., Tech. Dig. Int. Electron Devices Meet. 2000, p. 23.
141.
141.J. C. Phillips, J. Non-Cryst. Solids 34, 153 (1979);
141.J. C. Phillips, J. Non-Cryst. Solids 47, 203 (1983).
142.
142.J. C. Phillips, J. Vac. Sci. Technol. B 18, 1749 (2000).
143.
143.(a) W.-J. Qi, R. Nieh, E. Dharmarajan, B. H. Lee, Y. Jeon, L. Kang, K. Onishi, and J. C. Lee, Appl. Phys. Lett. 77, 1704 (2000);
143.(b) M. Copel, E. Cortier, and F. M. Ross, Appl. Phys. Lett. 78, 1607 (2001);
143.(c) J. A. Gupta, D. Londheer, J. P. McCaffrey, and G. I. Sproule, Appl. Phys. Lett. 78, 1718 (2001).
144.
144.W. B. Blumenthal, The Chemical Behavior of Zirconium (Van Nostrand, Princeton, 1958), pp. 201–219.
145.
145.L. Bragg, G. F. Claringbull, and W. H. Taylor, Crystal Structures of Minerals (Cornell University Press, Ithaca, 1965), p. 185.
146.
146.P. J. Harrop and D. S. Campbell, Thin Solid Films 2, 273 (1968).
147.
147.E. M. Vogel, K. Z. Ahmed, B. Hornung, W. Kirklen Henson, P. K. McLarty, G. Lucovsky, J. R. Hauser, and J. J. Wortman, IEEE Trans. Electron Devices 45, 1350 (1998).
148.
148.D. Frank, Y. Taur, and H.-S. P. Wong, IEEE Electron Device Lett. 19, 385 (1998).
149.
149.S. Krishnan, G. C.-F. Yeap, B. Yu, Q. Xiang, and M.-R. Lin, Proc. SPIE 3506, 65 (1998).
150.
150.B. Cheng et al., IEEE Trans. Electron Devices 46, 1537 (1999).
151.
151.R. D. Shannon, J. Appl. Phys. 73, 348 (1993).
152.
152.J. Robertson and C. W. Chen, Appl. Phys. Lett. 74, 1168 (1999).
153.
153.J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).
154.
154.S. O. Kasap, Principles of Electrical Engineering Materials and Devices, 2nd ed. (McGraw-Hill, New York, 2002).
155.
155.G. Lucovsky and B. Rayner, Appl. Phys. Lett. 77, 2912 (2000).
156.
156.R. Beyers, J. Appl. Phys. 56, 147 (1984).
157.
157.K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996).
158.
158.S. Q. Wang and J. W. Mayer, J. Appl. Phys. 64, 4711 (1988).
159.
159.I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1973).
160.
160.L. B. Pankratz, Thermodynamic Properties of Elements and Oxides (U.S. Dept. of Interior, Bureau of Mines Bulletin 672, U.S. Govt. Printing Office, Washington, D.C., 1982).
161.
161.S. P. Murarka, Silicides for VLSI Applications (Academic, New York, 1983).
162.
162.S. Murtaza, J. Hu, S. Unnikrishnan, M. Rodder, and I-C. Chen, Proc. SPIE 3506, 49 (1998).
163.
163.H. Zhong, G. Heuss, and V. Misra, IEEE Electron Device Lett. 21, 593 (2000).
164.
164.H. Zhong, G. Heuss, V. Misra, H. Luan, C. H. Lee, and D. L. Kwong, Appl. Phys. Lett. 78, 1134 (2001).
165.
165.T.-J. King, J. P. McVittie, K. C. Saraswat, and J. R. Pfiester, IEEE Trans. Electron Devices 41, 228 (1994).
166.
166.K. Uejima, T. Yamamoto, and T. Mogami, Tech. Dig. Int. Electron Devices Meet. 2000, p. 445.
167.
167.S. J. Wang, C. K. Ong, S. Y. Xu, P. Chen, W. C. Tjiu, J. W. Chai, A. C. H. Huan, W. J. Yoo, J. S. Lim, W. Feng, and W. K. Choi, Appl. Phys. Lett. 78, 1604 (2001).
http://aip.metastore.ingenta.com/content/aip/journal/jap/89/10/10.1063/1.1361065
Loading
/content/aip/journal/jap/89/10/10.1063/1.1361065
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/89/10/10.1063/1.1361065
2001-05-15
2016-07-29
Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/89/10/10.1063/1.1361065&pageURL=http://scitation.aip.org/content/aip/journal/jap/89/10/10.1063/1.1361065'
Right1,Right2,Right3,