Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/98/4/10.1063/1.1992666
1.
1.C. W. Bunn, Proc. Phys. Soc. London 47, 835 (1935).
2.
2.H. Braekken and C. Jore, Det Norske Videnskabers Skrifter (The Norwegian Science Scripts) NR8, 1 (1935) (in Norwegian)
3.
3.R. B. Heller, J. McGannon, and A. H. Weber, J. Appl. Phys. 21, 1283 (1950).
http://dx.doi.org/10.1063/1.1699591
4.
4.T. B. Rymer and G. D. Archard, Research (London) 5, 292 (1952).
5.
5.A. Cimino, M. Marezio, and A. Santoro, Naturwiss. 12, 348 (1957).
6.
6.T. J. Gray, J. Am. Ceram. Soc. 37, 534 (1954).
7.
7.G. P. Mohatny and L. V. Azaroff, J. Chem. Phys. 35, 1268 (1961).
http://dx.doi.org/10.1063/1.1732035
8.
8.A. A. Khan, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A24, 403 (1968).
9.
9.R. R. Reeber, J. Appl. Phys. 41, 5063 (1970).
http://dx.doi.org/10.1063/1.1658600
10.
10.D. C. Reynolds and T. C. Collins, Phys. Rev. 185, 1099 (1969).
http://dx.doi.org/10.1103/PhysRev.185.1099
11.
11.D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90104-9
12.
12.Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, Phys. Rev. 143, 512 (1965).
http://dx.doi.org/10.1103/PhysRev.143.512
13.
13.R. J. Collins and D. A. Kleinman, J. Phys. Chem. Solids 11, 190 (1959).
http://dx.doi.org/10.1016/0022-3697(59)90213-6
14.
14.R. L. Weiher, Phys. Rev. 152, 736 (1966).
http://dx.doi.org/10.1103/PhysRev.152.736
15.
15.W. S. Bear, Phys. Rev. 154, 785 (1967).
http://dx.doi.org/10.1103/PhysRev.154.785
16.
16.E. Mollwo, Z. Angew. Phys. 6, 257 (1954).
17.
17.W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
http://dx.doi.org/10.1063/1.1703106
18.
18.W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.59
19.
19.A. R. Hutson, J. Appl. Phys. 32, 2287 (1961).
http://dx.doi.org/10.1063/1.1777061
20.
20.J. L. Freeouf, Phys. Rev. B 7, 3810 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.3810
21.
21.O. F. Schirmer and D. Zwingel, Solid State Commun. 8, 1559 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90608-3
22.
22.J. J. Hopfield and D. G. Thomas, Phys. Rev. Lett. 15, 22 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.22
23.
23.R. E. Stephens and I. H. Malitson, J. Res. Natl. Bur. Stand. 49, 249 (1952).
24.
24.Y. S. Park and J. R. Schneider, J. Appl. Phys. 39, 3049 (1968).
http://dx.doi.org/10.1063/1.1656731
25.
25.G. Heiland, E. Mollwo, and F. Stöckmann, Solid State Phys. 8, 191 (1959).
26.
26.T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
http://dx.doi.org/10.1103/PhysRev.142.570
27.
27.C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).
http://dx.doi.org/10.1103/PhysRev.181.1351
28.
28.R. H. Callender, S. S. Sussman, M. Selders, and R. K. Chang, Phys. Rev. B 7, 3788 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.3788
29.
29.J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.3753
30.
30.M. Tsuboi and A. Wada, J. Chem. Phys. 48, 2615 (1968).
http://dx.doi.org/10.1063/1.1669491
31.
31.S. P. S. Porto and R. S. Krishnan, J. Chem. Phys. 47, 1009 (1967).
http://dx.doi.org/10.1063/1.1711980
32.
32.S. S. Mitra, O. Brafman, W. B. Daniels, and R. K. Crawford, Phys. Rev. 186, 942 (1969).
http://dx.doi.org/10.1103/PhysRev.186.942
33.
33.G. Galli and J. E. Coker, Appl. Phys. Lett. 16, 439 (1970).
http://dx.doi.org/10.1063/1.1653058
34.
34.M. Shiloh and J. Gutman, J. Cryst. Growth 11, 105 (1971).
35.
35.D. F. Croxall, R. C. C. Ward, C. A. Wallace, and R. C. Kell, J. Cryst. Growth 22, 117 (1974).
http://dx.doi.org/10.1016/S0022-0248(01)00852-1
36.
36.D. C. Reynolds (private communication).
37.
37.W. Kern and R. C. Heim, J. Electrochem. Soc. 117, 562 (1970).
38.
38.D. C. Look, Mater. Sci. Eng., B 80, 381 (2001).
39.
39.E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, J. Cryst. Growth 260, 166 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.08.019
40.
40.Please visit the web site http://www.cermetinc.com/products.htm
41.
41.J.-M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, J. Cryst. Growth 207, 30 (1999).
42.
42.D. C. Look, D. C. Reynolds, J. W. Hemski, R. L. Jones, and J. R. Sizelove, Appl. Phys. Lett. 75, 811 (1999).
http://dx.doi.org/10.1063/1.124521
43.
43.A. Y. Polyakov et al., J. Appl. Phys. 94, 2895 (2003).
http://dx.doi.org/10.1063/1.1597944
44.
44.S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, C. Evans, A. J. Nelson, and A. V. Hamza, Phys. Rev. B 67, 094115 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.094115
45.
45.X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84, 2268 (2004);
http://dx.doi.org/10.1063/1.1690469
45.X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause,J. Mater. Sci. 15, 373 (2004).
46.
46.F. Hamdani et al., J. Appl. Phys. 83, 983 (1998).
http://dx.doi.org/10.1063/1.366786
47.
47.T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
48.
48.S. J. Pearton et al., J. Phys.: Condens. Matter 16, R209 (2004).
http://dx.doi.org/10.1088/0953-8984/16/7/R03
49.
49.S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).
http://dx.doi.org/10.1088/0268-1242/19/10/R01
50.
50.D. C. Look and B. Claflin, Phys. Status Solidi B 241, 624 (2004).
http://dx.doi.org/10.1002/pssb.200304271
51.
51.D. C. Look, B. Claflin, Ya. I. Alivov, and S. J. Park, Phys. Status Solidi A 201, 2203 (2004).
http://dx.doi.org/10.1002/pssa.200404803
52.
52.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlattices Microstruct. 34, 3 (2004).
53.
53.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
http://dx.doi.org/10.1016/j.pmatsci.2004.04.001
54.
54.D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Mater. Today7, 34 (2004).
55.
55.V. A. Nikitenko, J. Appl. Spectrosc. 52, 367 (1992).
56.
56.J. E. Jaffe and A. C. Hess, Phys. Rev. B 48, 7903 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.7903
57.
57.J. E. Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess, Phys. Rev. B 62, 1660 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.1660
58.
58.CRC Handbook of Chemistry and Physics, 58th ed. (CRC, Boca Raton, 1977).
59.
59.E. Kisi and M. M. Elcombe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45, 1867 (1989).
http://dx.doi.org/10.1107/S0108270189004269
60.
60.C. H. Bates, W. B. White, and R. Roy, Science 137, 993 (1962).
61.
61.L. Gerward and J. S. Olsen, J. Synchrotron Radiat. 2, 233 (1995).
http://dx.doi.org/10.1107/S0909049595009447
62.
62.J. M. Recio, M. A. Blanco, V. Luaña, R. Pandey, L. Gerward, and J. Staun Olsen, Phys. Rev. B 58, 8949 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.8949
63.
63.J. C. Jamieson, Phys. Earth Planet. Inter. 3, 201 (1970).
http://dx.doi.org/10.1016/0031-9201(70)90056-7
64.
64.S. Desgreniers, Phys. Rev. B 58, 14102 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14102
65.
65.H. Karzel et al., Phys. Rev. B 53, 11425 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.11425
66.
66.R. Ahuja, L. Fast, O. Eriksson, J. M. Wills, and B. Johansson, J. Appl. Phys. 83, 8065 (1998).
http://dx.doi.org/10.1063/1.367901
67.
67.J. M. Recio, R. Pandey, and V. Luana, Phys. Rev. B 47, 3401 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.3401
68.
68.M. Wilson and P. A. Madden, Mol. Phys. 90, 75 (1997).
http://dx.doi.org/10.1080/002689797172886
69.
69.L.-G. Liu and W. A. Bassett, Elements, Oxides, and Silicates: High-Pressure Phases with Implications for the Earth’s Interior (Oxford University, New York, 1986).
70.
70.A. Zaoui and W. Sekkal, Phys. Rev. B 66, 1741061 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.174106
71.
71.T. Kogure and Y. Bando, J. Electron Microsc. 47, 7903 (1993).
72.
72.A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y.-W. Ok, and T.-Y. Seong, Appl. Phys. Lett. 76, 550 (2000).
http://dx.doi.org/10.1063/1.125851
73.
73.S.-K. Kim, S.-Y. Jeong, and C.-R. Cho, Appl. Phys. Lett. 82, 562 (2003).
http://dx.doi.org/10.1063/1.1536253
74.
74.W. L. Bond, Acta Crystallogr. 13, 814 (1960).
http://dx.doi.org/10.1107/S0365110X60001941
75.
75.F. J. Himpsel, Adv. Phys. 32, 1 (1983).
76.
76.U. Rössler, Phys. Rev. 184, 733 (1969).
http://dx.doi.org/10.1103/PhysRev.184.733
77.
77.D. W. Langer and C. J. Vesely, Phys. Rev. B 2, 4885 (1970).
78.
78.R. A. Powell, W. E. Spicer, and J. C. McMenamin, Phys. Rev. Lett. 27, 97 (1971).
http://dx.doi.org/10.1103/PhysRevLett.27.97
79.
79.R. A. Powell, W. E. Spicer, and J. C. McMenamin, Phys. Rev. B 6, 3056 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.3056
80.
80.L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalezyk, and D. A. Shirley, Phys. Rev. B 9, 600 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.600
81.
81.C. J. Vesely, R. L. Hengehold, and D. W. Langer, Phys. Rev. B 5, 2296 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.2296
82.
82.S. Bloom and I. Ortenburger, Phys. Status Solidi B 58, 561 (1973).
83.
83.J. R. Chelikowsky, Solid State Commun. 22, 351 (1977).
http://dx.doi.org/10.1016/0038-1098(77)91064-X
84.
84.I. Ivanov and J. Pollmann, Phys. Rev. B 24, 7275 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.7275
85.
85.D. H. Lee and J. D. Joannopoulos, Phys. Rev. B 24, 6899 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.6899
86.
86.P. Schröer, P. Krüger, and J. Pollmann, Phys. Rev. B 47, 6971 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.6971
87.
87.S. Massidda, R. Resta, M. Posternak, and A. Baldereschi, Phys. Rev. B 52, R16977 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R16977
88.
88.P. Schröer, P. Krüger, and J. Pollmann, Phys. Rev. B 49, 17092 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.17092
89.
89.D. Vogel, P. Krüger, and J. Pollmann, Phys. Rev. B 52, R14316 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R14316
90.
90.R. T. Girard, O. Tjernberg, G. Chiaia, S. Söderholm, U. O. Karlsson, C. Wigren, H. Nylèn, and I. Lindau, Surf. Sci. 373, 409 (1997).
http://dx.doi.org/10.1016/S0039-6028(96)01181-8
91.
91.C. B. Duke, A. R. Lubinsky, S. C. Chang, B. W. Lee, and P. Mark, Phys. Rev. B 15, 4865 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.4865
92.
92.C. B. Duke, R. J. Meyer, A. Paton, and P. Mark, Phys. Rev. B 18, 4225 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.4225
93.
93.Y. R. Wang and C. B. Duke, Surf. Sci. 192, 309 (1987).
http://dx.doi.org/10.1016/0167-2584(87)90799-7
94.
94.W. Göpel, J. Pollmann, I. Ivanov, and B. Reihl, Phys. Rev. B 26, 3144 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.3144
95.
95.G. Zwicker and K. Jacobi, Solid State Commun. 54, 701 (1985).
http://dx.doi.org/10.1016/0038-1098(85)90591-5
96.
96.K. Ozawa, K. Sawada, Y. Shirotori, K. Edamoto, and M. Nakatake, Phys. Rev. B 68, 125417 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125417
97.
97.S. H. Wei and A. Zounger, Phys. Rev. B 37, 8958 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.8958
98.
98.J. L. Martins, N. Troullier, and S. H. Wei, Phys. Rev. B 43, 2213 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.2213
99.
99.Y.-N. Xu and W. Y. Ching, Phys. Rev. B 48, 4335 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.4335
100.
100.O. Zakharov, A. Rubio, X. Blasé, M. L. Cohen, and S. G. Louie, Phys. Rev. B 50, 10780 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.10780
101.
101.N. A. Hill and U. Waghmare, Phys. Rev. B 62, 8802 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.8802
102.
102.J. E. Jaffe, R. Pandey, and A. B. Kunz, Phys. Rev. B 43, 14030 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.14030
103.
103.E. Hückel, Z. Phys. 70, 204 (1931).
104.
104.A. Polian, M. Grimsditch, and I. Grzegory, J. Appl. Phys. 79, 3343 (1996).
http://dx.doi.org/10.1063/1.361236
105.
105.T. B. Bateman, J. Appl. Phys. 35, 3309 (1962).
106.
106.F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
107.
107.A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, Phys. Rev. B 50, 10715 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.10715
108.
108.J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1975).
109.
109.F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10024
110.
110.H. Morkoç, Nitride Semiconductors and Devices (Springer, Berlin, 1999).
111.
111.F. Decremps, J. Zhang, B. Li, and R. C. Liebermann, Phys. Rev. B63, 224105 (2001);
http://dx.doi.org/10.1103/PhysRevB.65.224105
111.F. Decremps, J. Pellicer-Porres, A. Marco Saitta, J.-C. Chervin, and A. Polian, Phys. Rev. B 65, 092101 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.092101
112.
112.N. Soga and O. L. Anderson, J. Appl. Phys. 38, 2985 (1967).
http://dx.doi.org/10.1063/1.1710037
113.
113.S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, and M. V. Swain, Appl. Phys. Lett.80, 956 (2002);
http://dx.doi.org/10.1063/1.1448175
113.S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, and M. V. Swain, Appl. Phys. Lett. 77, 3373 (2000).
http://dx.doi.org/10.1063/1.1328047
114.
114.J. C. Phillips, Bonds and Bands in Semiconductors (Academic, New York, 1973).
115.
115.M. A. Stroscio and M. Dutta, Phonons in Nanostructures (Cambridge University Press, Cambridge, 2001).
116.
116.B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, Phys. Status Solidi B 119, 227 (1983).
117.
117.Y. F. Lu, H. Q. Ni, and Z. M. Ren, J. Appl. Phys. 88, 498 (2000).
http://dx.doi.org/10.1063/1.373685
118.
118.N. Ashkenov et al., J. Appl. Phys. 93, 126 (2003).
http://dx.doi.org/10.1063/1.1526935
119.
119.M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, J. Appl. Phys. 87, 2445 (2000).
http://dx.doi.org/10.1063/1.372199
120.
120.S. Minomura, High Pressure in Science and Technology, Proceedings of the Ninth AIRAPT International High Pressure Conference on High Pressure in Science and Technology, edited by C. Homan, R. K. MacCrane, and E. Whalley(North-Holland, New York, 1984), p. 277.
121.
121.S. Limpijumnong and W. R. L. Lambrecht, Phys. Rev. Lett. 86, 91 (2001);
http://dx.doi.org/10.1103/PhysRevLett.86.91
121.J. Serrano, A. Rubio, E. Hernández, A. Muñoz, and A. Mujica, Phys. Rev. B 62, 16612 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.16612
122.
122.A. Kaschner et al., Appl. Phys. Lett. 80, 1909 (2002).
http://dx.doi.org/10.1063/1.1461903
123.
123.C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003).
http://dx.doi.org/10.1063/1.1609251
124.
124.C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1012
125.
125.M. D. McCluskey, S. J. Jokela, K. K. Zhuravlev, P. J. Simpson, and K. G. Lynn, Appl. Phys. Lett. 81, 3807 (2002);
http://dx.doi.org/10.1063/1.1520703
125.E. V. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle, and R. Helbig, Phys. Rev. B 66, 165205 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165205
126.
126.E. V. Lavrov, Physica B 340–342, 195 (2003).
127.
127.E. V. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle, and R. Helbig, Phys. Rev. B 66, 165205 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165205
128.
128.M. D. McCluskey, S. J. Jokela, K. K. Zhuravlev, P. J. Simpson, and K. G. Lynn, Appl. Phys. Lett. 81, 3807 (2002).
http://dx.doi.org/10.1063/1.1520703
129.
129.S. J. Jokela, M. D. McCluskey, and K. G. Lynn, Physica B 340–342, 221 (2003).
130.
130.N. H. Nickel and K. Fleischer, Phys. Rev. Lett. 90, 197402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.197402
131.
131.J. A. Wolk, J. W. Ager III, K. J. Duxstad, E. E. Haller, N. R. Taskar, D. R. Dorman, and D. J. Olego, Appl. Phys. Lett. 63, 2756 (1993).
http://dx.doi.org/10.1063/1.110325
132.
132.H. Ibach, Phys. Status Solidi 33, 257 (1969).
133.
133.M.-Y. Han and J.-H. Jou, Thin Solid Films 260, 58 (1995);
http://dx.doi.org/10.1016/0040-6090(94)06459-8
133.F. Z. Aoumeur, Kh. Benkabou, and B. Belgoumène, Physica B 337, 292 (2003).
134.
134.C. M. Bhandari and D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).
135.
135.C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 150.
136.
136.D. I. Florescu, V. M. Asnin, F. H. Pollak, R. J. Molnar, and C. E. C. Wood, J. Appl. Phys. 88, 3295 (2000).
http://dx.doi.org/10.1063/1.1289072
137.
137.D. I. Florescu, L. G. Mourokh, F. H. Pollak, D. C. Look, G. Cantwell, and X. Li, J. Appl. Phys. 91, 890 (2002).
http://dx.doi.org/10.1063/1.1426234
138.
138.F. H. Pollak, Ü. Özgür, S. Doğan, X. Gu, S.-J. Cho, H. Morkoç, and J. Nause (unpublished).
139.
139.T. Olorunyolemi, A. Birnboim, Y. Carmel, O. C. Wilson, Jr., and I. K. Lloyd, J. Am. Ceram. Soc. 85, 1249 (2002).
140.
140.T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1997).
http://dx.doi.org/10.1039/a602506d
141.
141.M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).
http://dx.doi.org/10.1063/1.360976
142.
142.S. Katsuyama, Y. Takagi, M. Ito, K. Majima, H. Nagai, H. Sakai, K. Yoshimura, and K. Kosuge, J. Appl. Phys. 92, 1391 (2002).
http://dx.doi.org/10.1063/1.1489091
143.
143.T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 8, 409 (1998).
http://dx.doi.org/10.1039/a706213c
144.
144.K. F. Cai, E. Müller, C. Drašar, and A. Mrotzek, Mater. Sci. Eng., B 104, 45 (2003).
145.
145.W. N. Lawless and T. K. Gupta, J. Appl. Phys. 60, 607 (1986).
http://dx.doi.org/10.1063/1.337455
146.
146.J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, J. Appl. Phys.86, 6864 (1991);
http://dx.doi.org/10.1063/1.371764
146.D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999);
http://dx.doi.org/10.1103/PhysRevLett.82.2552
146.D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Commun.105, 399 (1998).
http://dx.doi.org/10.1016/S0038-1098(97)10145-4
147.
147.D. S. Ginley and C. Bright, Mater. Res. Bull. 25, 15 (2000);
147.E. M. Kaidashev et al., Appl. Phys. Lett. 82, 3901 (2003).
http://dx.doi.org/10.1063/1.1578694
148.
148.H. Kato, M. Sano, K. Miyamoto, and T. Yao, Jpn. J. Appl. Phys., Part 1 42, 2241 (2003);
148.K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, and H. Takasu, Phys. Status Solidi A180, 287 (2000);
http://dx.doi.org/10.1002/1521-396X(200007)180:1<287::AID-PSSA287>3.0.CO;2-7
148.K. Miyamoto, M. Sano, H. Kato, and T. Yao, Jpn. J. Appl. Phys., Part 241, L1203 (2002);
http://dx.doi.org/10.1143/JJAP.41.L1203
148.K. Miyamoto, M. Sano, H. Kato, and T. Yao, J. Cryst. Growth265, 34 (2004);
148.T. Edahiro, N. Fujimura, and T. Ito, J. Appl. Phys.93, 7673 (2003).
http://dx.doi.org/10.1063/1.1558612
149.
149.T. Yamamoto, T. Shiosaki, and A. Kawabata, J. Appl. Phys. 51, 3113 (1980).
http://dx.doi.org/10.1063/1.328100
150.
150.T. Mitsuyu, S. Ono, and K. Wasa, J. Appl. Phys. 51, 2464 (1980).
http://dx.doi.org/10.1063/1.328019
151.
151.A. Hachigo, H. Nakahata, K. Higaki, S. Fujii, and S. Shikata, Appl. Phys. Lett. 65, 2556 (1994).
http://dx.doi.org/10.1063/1.112634
152.
152.J. G. E. Gardeniers, Z. M. Rittersma, and G. J. Burger, J. Appl. Phys. 83, 7844 (1998).
http://dx.doi.org/10.1063/1.367959
153.
153.S. K. Tiku, C. K. Lau, and K. M. Lakin, Appl. Phys. Lett. 36, 318 (1980).
http://dx.doi.org/10.1063/1.91477
154.
154.M. Kasuga and M. Mochizuki, J. Cryst. Growth 54, 185 (1981).
http://dx.doi.org/10.1016/0022-0248(81)90459-0
155.
155.V. Srikant, V. Sergo, and D. R. Clarke, Appl. Phys. Lett. 16, 439 (1995).
http://dx.doi.org/10.1063/1.1653058
156.
156.K.-K. Kim, J.-H. Song, H.-J. Jung, W.-K. Choi, S.-J. Park, and J.-H. Song, J. Appl. Phys. 87, 3573 (2000);
http://dx.doi.org/10.1063/1.372383
156.K.-K. Kim, J.-H. Song, H.-J. Jung, W.-K. Choi, S.-J. Park, J.-H. Song, and J.-Y. Lee, J. Vac. Sci. Technol. A 18, 2864 (2000).
http://dx.doi.org/10.1116/1.1318192
157.
157.P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, J. Cryst. Growth 201–202, 627 (1999).
158.
158.Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
159.
159.R. D. Vispute et al., Appl. Phys. Lett. 73, 348 (1998).
http://dx.doi.org/10.1063/1.121830
160.
160.Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000).
161.
161.M. Kasuga and S. Ogawa, Jpn. J. Appl. Phys., Part 1 22, 794 (1983).
162.
162.N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose, and H. Yamamoto, Jpn. J. Appl. Phys., Part 2 38, L454 (1999).
163.
163.D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
http://dx.doi.org/10.1063/1.118824
164.
164.Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
http://dx.doi.org/10.1063/1.121620
165.
165.J. Narayan, K. Dovidenko, A. K. Sharma, and S. Oktyabrsky, J. Appl. Phys. 84, 2597 (1998).
http://dx.doi.org/10.1063/1.368440
166.
166.H. J. Ko, Y. F. Chen, Z. Zhu, T. Hanada, and T. Yao, J. Cryst. Growth 208, 389 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00510-2
167.
167.R. J. Lad, P. D. Funkenbusch, and C. R. Aita, J. Vac. Sci. Technol. 17, 808 (1980).
http://dx.doi.org/10.1116/1.570565
168.
168.W. Shih and M. Wu, J. Cryst. Growth 137, 319 (1994).
http://dx.doi.org/10.1016/0022-0248(94)90968-7
169.
169.D. Hwang, K. Bang, M. Jeong, and J. Myoung, J. Cryst. Growth 254, 449 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01205-3
170.
170.A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 2635 (1999).
http://dx.doi.org/10.1063/1.125102
171.
171.T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, J. Cryst. Growth 214/215, 72 (2000).
172.
172.T. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K. Obara, and T. Shishido, J. Cryst. Growth 229, 98 (2001).
173.
173.W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, J. Cryst. Growth 203, 186 (1999).
http://dx.doi.org/10.1016/S0022-0248(99)00076-7
174.
174.K. Matsumoto and K. Noda, J. Cryst. Growth 102, 137 (1990).
175.
175.J. Nause, III-Vs Review 12, 28 (1999).
176.
176.M. Suscavage et al., MRS Internet J. Nitride Semicond. Res. 4S1, G340 (1999).
177.
177.M. A. L. Johnson, S. Fujita, W. H. Rowland, Jr., W. C. Hughes, J. W. Cook, Jr., and J. F. Schetzina, J. Electron. Mater. 21, 157 (1992).
178.
178.K. Kobayashi, T. Matsubara, S. Matsushima, S. Shirakata, S. Isomura, and G. Okada, Thin Solid Films 266, 106 (1995).
http://dx.doi.org/10.1016/0040-6090(95)06657-8
179.
179.M. A. L. Johnson, S. Fujita, W. H. Rowland, Jr., W. C. Hughes, J. W. Cook Jr., and J. F. Schetzina, J. Electron. Mater. 25, 855 (1996).
180.
180.Y. Chen et al., J. Cryst. Growth 181, 165 (1997).
http://dx.doi.org/10.1016/S0022-0248(97)00286-8
181.
181.Y. Chen, H.-J. Ko, S.-K. Hong, and T. Yao, Appl. Phys. Lett. 76, 559 (2000).
http://dx.doi.org/10.1063/1.125817
182.
182.P. Fons, K. Iwata, S. Niki, A. Yamata, K. Matsubara, and M. Watanabe, J. Cryst. Growth 200, 532 (2000).
183.
183.K. Nakamura, T. Shoji, and H.-B. Kang, Jpn. J. Appl. Phys., Part 2 39, L534 (2000).
http://dx.doi.org/10.1143/JJAP.39.L534
184.
184.H.-B. Kang, K. Yoshida, and K. Nakamura, Jpn. J. Appl. Phys., Part 1 37, 5220 (1998).
185.
185.K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, and S. Fujita, J. Cryst. Growth 209, 522 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00610-7
186.
186.H. Kato, M. Sano, K. Miyamota, and T. Yao, Jpn. J. Appl. Phys., Part 2 42, L1002 (2003).
http://dx.doi.org/10.1143/JJAP.42.L1002
187.
187.D. Kohl, M. Henzler, and G. Heiland, Surf. Sci. 41, 403 (1974).
http://dx.doi.org/10.1016/S0039-6028(98)00601-3
188.
188.J. L. Vossen, Phys. Thin Films 9, 1 (1977).
189.
189.Z. Y. Xue, D. H. Zhang, Q. P. Wang, and J. H. Wang, Appl. Surf. Sci. 195, 126 (2002).
190.
190.Y. M. Lu, W. S. Hwang, W. Y. Liu, and J. S. Yang, Mater. Chem. Phys. 72, 269 (2001).
191.
191.S. Jeong, B. Kim, and B. Lee, Appl. Phys. Lett. 82, 2625 (2003).
http://dx.doi.org/10.1063/1.1568543
192.
192.S. J. Chen, Y. C. Liu, J. G. Ma, Y. M. Lu, J. Y. Zhang, D. Z. Shen, and X. W. Fan, J. Cryst. Growth 254, 86 (2003).
193.
193.W. Water and S.-Y. Chu, Mater. Lett. 55, 67 (2002).
http://dx.doi.org/10.1016/S0167-577X(01)00621-8
194.
194.X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, and H. Yan, Mater. Lett. 57, 4655 (2003).
195.
195.S. K. Park and J. H. Je, Physica C 254, 167 (1995).
http://dx.doi.org/10.1016/0921-4534(95)00538-2
196.
196.K. Tominaga, S. Iwamura, Y. Shintani, and O. Tada, Jpn. J. Appl. Phys., Part 1 21, 519 (1981).
197.
197.S. J. Doh, S. I. Park, T. S. Cho, and J. H. Je, J. Vac. Sci. Technol. A 17, 3003 (1999).
http://dx.doi.org/10.1116/1.581973
198.
198.S. Maniv, W. D. Westwood, and E. Colombini, J. Vac. Sci. Technol. 20, 162 (1982).
http://dx.doi.org/10.1116/1.571350
199.
199.J.-H. Jou, M.-Y. Han, and D.-J. Cheng, J. Appl. Phys. 71, 4333 (1992).
http://dx.doi.org/10.1063/1.350815
200.
200.J. Hinze and K. Ellmer, J. Appl. Phys. 88, 2443 (2000).
http://dx.doi.org/10.1063/1.1288162
201.
201.K. Ozaki and M. Gomi, Jpn. J. Appl. Phys., Part 1 41, 5614 (2002).
http://dx.doi.org/10.1143/JJAP.41.5614
202.
202.M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin, and T. W. Kang, J. Appl. Phys. 92, 154 (2002).
http://dx.doi.org/10.1063/1.1483371
203.
203.C. Liu, Ü. Özgür, A. Teke, and H. Morkoç (unpublished).
204.
204.Y. Chen, D. Bagnall, and T. Yao, Mater. Sci. Eng., B 75, 190 (2000).
http://dx.doi.org/10.1016/S0921-5107(00)00372-X
205.
205.K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003).
http://dx.doi.org/10.1063/1.1591064
206.
206.S. Tüzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer, and R. T. Williams, Physica B 308–310, 1197 (2001).
207.
207.M. Kadota and M. Minakata, Jpn. J. Appl. Phys., Part 1 37, 2923 (1998).
http://dx.doi.org/10.1143/JJAP.37.2923
208.
208.M. Kadota, T. Miura, and M. Minakata, J. Cryst. Growth 237–239, 523 (2002).
209.
209.H.-B. Kang, K. Nakamura, S.-H. Lim, and D. Shindo, Jpn. J. Appl. Phys., Part 1 37, 781 (1998);
http://dx.doi.org/10.1143/JJAP.37.781
209.H.-B. Kang, K. Nakamura, K. Yoshida, and K. Ishikawa, Jpn. J. Appl. Phys., Part 2 36, L933 (1997).
210.
210.P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, and M. Watanabe, J. Cryst. Growth 209, 532 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00614-4
211.
211.K. Sakurai, D. Iwata, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., Part 1 38, 2606 (1999).
http://dx.doi.org/10.1143/JJAP.38.2606
212.
212.N. Izyumskaya, V. Avrutin, W. Schoch, W. A. El-Shaer, F. Reuss, T. Gruber, and A. Waag, J. Cryst. Growth 269, 356 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.04.120
213.
213.K. Nakahara et al., Jpn. J. Appl. Phys., Part 1 40, 250 (2001).
http://dx.doi.org/10.1143/JJAP.40.250
214.
214.T. Ohgaki, N. Ohashi, H. Kakemoto, S. Wada, Y. Adachi, H. Haneda, and T. Tsurumi, J. Appl. Phys. 93, 1961 (2003).
http://dx.doi.org/10.1063/1.1535256
215.
215.P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe, and H. Takasu, Appl. Phys. Lett. 77, 1801 (2000).
http://dx.doi.org/10.1063/1.1311603
216.
216.P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe, and H. Takasu, J. Cryst. Growth 227–228, 911 (2001).
217.
217.K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, and S. Fujita, J. Cryst. Growth 214/215, 92 (2000).
218.
218.M. Sano, K. Miyamoto, H. Kato, and T. Yao, Jpn. J. Appl. Phys., Part 2 42, L1050 (2003).
http://dx.doi.org/10.1143/JJAP.42.L1050
219.
219.X. Du, M. Murakami, H. Iwaki, Y. Ishitani, and A. Yoshikawa, Jpn. J. Appl. Phys., Part 2 41, L1043 (2002).
http://dx.doi.org/10.1143/JJAP.41.L1043
220.
220.X. Wang, H. Iwaki, M. Murakami, X. Du, Y. Ishitani, and A. Yoshikawa, Jpn. J. Appl. Phys., Part 2 42, L99 (2003).
http://dx.doi.org/10.1143/JJAP.42.L99
221.
221.K. Nakahara, H. Takasu, P. Fons, K. Iwata, A. Yamada, K. Matsubara, R. Hunger, and S. Niki, J. Cryst. Growth 227–228, 923 (2001).
222.
222.K. Ogata, K. Koike, T. Tanite, T. Komuro, F. Yan, S. Sasa, M. Inoue, and M. Yano, J. Cryst. Growth 251, 623 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02277-7
223.
223.Y. Chen, H. J. Ko, S. Hong, T. Yao, and Y. Segawa, J. Cryst. Growth 214/215, 87 (2000);
223.Y. F. Chen, H. J. Ko, S. K. Hong, K. Inaba, Y. Segawa, and T. Yao, J. Cryst. Growth 227–228, 917 (2001).
224.
224.K. Miyamoto, M. Sano, H. Kato, and T. Yao, Jpn. J. Appl. Phys., Part 2 41, L1203 (2002).
http://dx.doi.org/10.1143/JJAP.41.L1203
225.
225.A. Ohtomo et al., Appl. Phys. Lett. 72, 2466 (1998).
http://dx.doi.org/10.1063/1.121384
226.
226.H. Kato, M. Sano, K. Miyamoto, and T. Yao, Jpn. J. Appl. Phys., Part 1 42, 2241 (2003).
227.
227.T. Ohnishi, A. Ohtomo, M. Kawasaki, K. Takahashi, M. Yoshimoto, and H. Koinuma, Appl. Phys. Lett. 72, 824 (1998).
http://dx.doi.org/10.1063/1.120905
228.
228.S. Hong, T. Hanada, Y. Chen, H. Ko, T. Yao, D. Imai, K. Araki, and M. Shinohara, Appl. Surf. Sci. 190, 491 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00924-2
229.
229.I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, and M. Kawasaki, Surf. Sci. 443, L1043 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)01024-9
230.
230.S. K. Hong et al., Phys. Rev. B 65, 115331 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.115331
231.
231.H. J. Ko, Y. Chen, S. Hong, and T. Yao, J. Cryst. Growth 209, 816 (2000);
http://dx.doi.org/10.1016/S0022-0248(99)00726-5
231.S. Hong, H. J. Ko, Y. Chen, T. Hanada, and T. Yao, J. Cryst. Growth 214/215, 81 (2000).
232.
232.C. Liu, S.-J. Cho, and H. Morkoç (unpublished).
233.
233.H. J. Ko, S. Hong, Y. Chen, and T. Yao, Thin Solid Films 409, 153 (2002);
http://dx.doi.org/10.1016/S0040-6090(02)00119-0
233.S. Hong, H. J. Ko, Y. Chen, T. Hanada, and T. Yao, Appl. Surf. Sci. 159–160, 441 (2000).
234.
234.S. Hong, H. Ko, Y. Chen, and T. Yao, J. Cryst. Growth 209, 537 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00615-6
235.
235.M. Fujita, N. Kawamota, T. Tatsumi, K. Yamagishi, and Y. Horikoshi, Jpn. J. Appl. Phys., Part 1 42, 67 (2003).
http://dx.doi.org/10.1143/JJAP.42.67
236.
236.N. Kawamoto, M. Fujita, T. Tatsumi, and Y. Horikoshi, Jpn. J. Appl. Phys., Part 1 42, 7209 (2003).
237.
237.L. N. Dinh, M. A. Schildbach, M. Balooch, and W. McLean II, J. Appl. Phys.86, 1149 (1999).
http://dx.doi.org/10.1063/1.370857
238.
238.A. Tsukazaki et al., Nat. Mater. 4, 42 (2005).
http://dx.doi.org/10.1038/nmat1284
239.
239.A. Fouchet, W. Prellier, B. Mercey, L. Méchin, V. N. Kulkarni, and T. Venkatesan, J. Appl. Phys. 96, 3228 (2004).
http://dx.doi.org/10.1063/1.1772891
240.
240.W. Prellier, A. Fouchet, B. Mercey, C. Simon, and B. Raveau, Appl. Phys. Lett. 82, 3490 (2003).
http://dx.doi.org/10.1063/1.1578183
241.
241.H. Sankur and J. T. Cheung, J. Vac. Sci. Technol. A 1, 1806 (1983).
http://dx.doi.org/10.1116/1.572219
242.
242.T. Nakayama, Surf. Sci. 133, 101 (1983).
http://dx.doi.org/10.1016/0039-6028(83)90486-7
243.
243.S. Choopun, R. D. Vispute, W. Noch, A. Balsamo, R. P. Sharma, T. Venkatesan, A. Iliadis, and D. C. Look, Appl. Phys. Lett. 75, 3947 (1999).
http://dx.doi.org/10.1063/1.125503
244.
244.A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, J. Appl. Phys. 90, 5661 (2001).
http://dx.doi.org/10.1063/1.1415544
245.
245.K. Matsubara, P. Fons, K. Iwata, A. Yamada, and S. Niki, Thin Solid Films 422, 176 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00965-3
246.
246.V. Craciun, J. Elders, J. G. E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett. 65, 2963 (1994).
http://dx.doi.org/10.1063/1.112478
247.
247.A. Kh. Abduev, B. M. Ataev, and A. M. Bagamadova, Izv. Akad. Nauk SSSR, Neorg. Mater. 11, 1928 (1987).
248.
248.R. A. Rabadanov, S. A. Semiletov, and Z. A. Magomedov, Solid State Phys. 12, 1431 (1979).
249.
249.B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, and R. A. Rabadanov, J. Cryst. Growth 198–199, 1222 (1999).
250.
250.M. V. Chukichev, B. M. Ataev, V. V. Mamedov, Ya. Alivov, and I. I. Khodos, Semiconductors 36, 1052 (2002).
251.
251.B. M. Ataev, I. K. Kamilov, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, and M. Kh. Rabadanov, J. Tech. Phys. 69, 138 (1999).
252.
252.K. Kaiya, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, and H. Yamamoto, Thin Solid Films 409, 116 (2002).
253.
253.N. Takashi, M. Makino, T. Nakamura, and H. Yamamoto, Chem. Mater. 14, 3622 (2002).
254.
254.C. K. Lau, S. K. Tiku, and K. M. Lakin, J. Electrochem. Soc. 127, 1843 (1980).
255.
255.F. T. J. Smith, Appl. Phys. Lett. 43, 1108 (1983).
http://dx.doi.org/10.1063/1.94243
256.
256.C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, and Y. J. Lu, J. Appl. Phys. 85, 2595 (1999).
http://dx.doi.org/10.1063/1.369577
257.
257.Y. Kashiwaba, K. Haga, H. Watanabe, B. P. Zhang, Y. Segawa, and K. Wakatsuki, Phys. Status Solidi B 229, 921 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<921::AID-PSSB921>3.0.CO;2-N
258.
258.T. Yasuda and Y. Segawa, Phys. Status Solidi B 241, 676 (2004).
259.
259.T. Gruber, C. Kirchner, and A. Waag, Phys. Status Solidi B 229, 841 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<841::AID-PSSB841>3.0.CO;2-J
260.
260.T. Gruber, C. Kirchner, K. Thonke, R. Sauer, and A. Waag, Phys. Status Solidi A 192, 166 (2002).
http://dx.doi.org/10.1002/1521-396X(200207)192:1<166::AID-PSSA166>3.0.CO;2-G
261.
261.N. Oleynik et al., Phys. Status Solidi A 192, 189 (2002).
http://dx.doi.org/10.1002/1521-396X(200207)192:1<189::AID-PSSA189>3.0.CO;2-X
262.
262.N. Oleynik et al., J. Cryst. Growth 248, 14 (2003).
263.
263.T. Kaufmann, G. Fuchs, and W. Webert, Cryst. Res. Technol. 23, 635 (1988).
264.
264.B. Hahn, G. Heindel, E. Pschorr-Schoberer, and W. Gebhardt, Semicond. Sci. Technol. 13, 788 (1998).
http://dx.doi.org/10.1088/0268-1242/13/7/022
265.
265.V. Sallet, J. F. Rommeluere, A. Lusson, A. Riviere, S. Fusil, O. Gorochov, and R. Triboulet, Phys. Status Solidi B 229, 903 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<903::AID-PSSB903>3.0.CO;2-N
266.
266.C. Kirchner, T. Gruber, F. Reuss, K. Thonke, A. Waag, C. Giessen, and M. Heuken, J. Cryst. Growth 248, 20 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01866-3
267.
267.K. Ogata, K. Maejima, Sz. Fujita, and Sg. Fujita, J. Electron. Mater. 30, 659 (2001).
268.
268.K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, and Sg. Fujita, J. Cryst. Growth 237, 553 (2002).
269.
269.K. Ogata, K. Maejima, Sz. Fujita, and Sg. Fujita, J. Cryst. Growth 248, 25 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01843-2
270.
270.A. Dadgar et al., J. Cryst. Growth 267, 140 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.03.028
271.
271.K. Ogata, T. Kawanishi, K. Sakurai, S.-W. Kim, K. Maejima, Sz. Fujita, and Sg. Fujita, Phys. Status Solidi B 229, 915 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<915::AID-PSSB915>3.0.CO;2-B
272.
272.C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).
http://dx.doi.org/10.1063/1.369577
273.
273.W. I. Park, S.-J. An, G.-C. Yi, and H. M. Jang, J. Mater. Res. 16, 1358 (2001);
273.W. I. Park, G.-C. Yi, and H. M. Jang, Appl. Phys. Lett. 79, 2022 (2001).
http://dx.doi.org/10.1063/1.1405811
274.
274.B. Zhang, L. Manh, K. Wakatsuki, T. Ohnishi, M. Lippmaa, N. Usami, M. Kawasaki, and Y. Segawa, Jpn. J. Appl. Phys., Part 1 42, 2291 (2003).
275.
275.B. Zhang et al., Jpn. J. Appl. Phys., Part 2 42, L264 (2003).
http://dx.doi.org/10.1143/JJAP.42.L264
276.
276.Y. Ma et al., J. Cryst. Growth 255, 303 (2003);
http://dx.doi.org/10.1016/S0022-0248(03)01244-2
276.Y. Ma et al., J. Appl. Phys. 95, 6268 (2004).
http://dx.doi.org/10.1063/1.1713040
277.
277.T. P. Smith, W. J. Mecouch, P. Q. Miraglia, A. M. Roskowski, P. J. Hartlieb, and R. F. Davis, J. Cryst. Growth 257, 255 (2003).
278.
278.T. P. Smith, H. A. McLean, D. J. Smith, P. Q. Miraglia, A. M. Roskowski, and R. F. Davis, J. Electron. Mater. 33, 826 (2004).
279.
279.T. P. Smith, H. McLean, D. J. Smith, and R. F. Davis, J. Cryst. Growth 265, 390 (2004).
280.
280.K. Ogata, K. Maejima, Sz. Fujita, and Sg. Fujita, J. Cryst. Growth 248, 25 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01843-2
281.
281.S. Muthukumar, H. F. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu, and Y. C. Lu, IEEE Trans. Nanotechnol. 2, 50 (2003).
282.
282.J. Zhong, S. Muthukumar, G. Saraf, H. Chen, Y. Chen, and Y. Lu, J. Electron. Mater. 33, 654 (2004).
283.
283.W. I. Park, D. H. Kim, S.-W. Jung, and G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002).
http://dx.doi.org/10.1063/1.1482800
284.
284.M.-C. Jeong, B.-Y. Oh, W. Lee, and J.-M. Myoung, J. Cryst. Growth 268, 149 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.05.019
285.
285.W. Lee, M.-C. Jeong, and J.-M. Myoung, Acta Mater. 52, 3949 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.05.010
286.
286.H. Yuan and Y. Zhang, J. Cryst. Growth 263, 119 (2004).
287.
287.R. Kling, C. Kirchner, T. Gruber, F. Reuss, and A. Waag, Nanotechnology 15, 1043 (2004).
http://dx.doi.org/10.1088/0957-4484/15/8/032
288.
288.W. I. Park, S. J. An, J. L. Yang, G. C. Yi, S. Hong, T. Joo, and M. Kim, J. Phys. Chem. B 108, 15457 (2004).
http://dx.doi.org/10.1021/jp046559t
289.
289.W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, and H. J. Lee, Appl. Phys. Lett. 85, 5052 (2004).
http://dx.doi.org/10.1063/1.1821648
290.
290.A. Mang, K. Reimann, and St. Rübenacke, Solid State Commun. 94, 251 (1995).
http://dx.doi.org/10.1016/0038-1098(95)00054-2
291.
291.D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, Phys. Rev. B 60, 2340 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2340
292.
292.W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B 65, 075207 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.075207
293.
293.K. Thonke, T. Gruber, N. Teofilov, R. Schönfelder, A. Waag, and R. Sauer, Physica B 308–310, 945 (2001).
294.
294.C. Boemare, T. Monteiro, M. J. Soares, J. G. Guilherme, and E. Alves, Physica B 308–310, 985 (2001).
295.
295.W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B 65, 075207 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.075207
296.
296.J. L. Birman, Phys. Rev. Lett. 2, 157 (1959).
http://dx.doi.org/10.1103/PhysRevLett.2.157
297.
297.D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, Appl. Phys. Lett. 79, 3794 (2001).
http://dx.doi.org/10.1063/1.1412435
298.
298.J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, J. Appl. Phys. 85, 1884 (1999).
299.
299.A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195207
300.
300.S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, J. Appl. Phys. 93, 756 (2003).
http://dx.doi.org/10.1063/1.1527707
301.
301.S. F. Chichibu, A. Tsukazaki, M. Kawasaki, K. Tamura, Y. Segawa, T. Sota, and H. Koinuma, Appl. Phys. Lett. 80, 2860 (2002).
http://dx.doi.org/10.1063/1.1471374
302.
302.D. C. Reynolds, D. C. Look, B. Jogai, R. L. Jones, C. W. Litton, H. Harsch, and G. Cantwell, J. Lumin. 82, 173 (1999).
http://dx.doi.org/10.1016/S0022-2313(99)00020-4
303.
303.K. Hümmer and P. Gebhardt, Phys. Status Solidi B 85, 271 (1978).
304.
304.J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, J. Appl. Phys. 85, 7884 (1999).
http://dx.doi.org/10.1063/1.370601
305.
305.T. Makino et al., Appl. Phys. Lett. 77, 975 (2000).
http://dx.doi.org/10.1063/1.1289066
306.
306.D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, Phys. Rev. B 57, 12151 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.12151
307.
307.X. T. Zhang et al., J. Lumin. 99, 149 (2002).
http://dx.doi.org/10.1016/S0022-2313(02)00331-9
308.
308.D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, J. Appl. Phys. 93, 3214 (2003).
http://dx.doi.org/10.1063/1.1545157
309.
309.H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, and B. K. Meyer, Opt. Mater. (Amsterdam, Neth.) 23, 33 (2003).
http://dx.doi.org/10.1016/S0925-3467(03)00055-7
310.
310.D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, H. Harsch, and G. Cantwell, Appl. Phys. Lett. 79, 3794 (2001).
http://dx.doi.org/10.1063/1.1412435
311.
311.J. J. Hopfield and D. G. Thomas, J. Phys. Chem. Solids 12, 276 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90049-4
312.
312.S. K. Suga, P. Cho, P. Heisinger, and T. Koda, J. Lumin. 12, 109 (1967).
http://dx.doi.org/10.1016/0022-2313(76)90070-3
313.
313.C. Weisbuch and R. Ulbrich, Phys. Rev. Lett. 39, 654 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.654
314.
314.Numerical Data and Functional Relationship in Science and Technology, Landolt/Bornstein New Series III Vol. 41B, edited by U. Rosler (Springer, Berlin, 1999).
315.
315.J. Rorison, D. C. Herbert, D. J. Dean, and M. S. Skolnick, J. Phys. C 17, 6435 (1984).
http://dx.doi.org/10.1088/0022-3719/17/35/014
316.
316.A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.946
317.
317.J. R. Haynes, Phys. Rev. Lett. 4, 361 (1960).
http://dx.doi.org/10.1103/PhysRevLett.4.361
318.
318.Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967);
http://dx.doi.org/10.1016/0031-8914(67)90062-6
318.L. Wang and N. C. Giles, J. Appl. Phys. 94, 973 (2003).
http://dx.doi.org/10.1063/1.1586977
319.
319.A. K. Viswanath, J. I. Lee, S. Yu, D. Kim, Y. Choi, and C. H. Hong, J. Appl. Phys. 84, 3848 (1998).
http://dx.doi.org/10.1063/1.368564
320.
320.D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, M. T. Harris, and M. J. Callahan, J. Appl. Phys. 88, 2152 (2000).
http://dx.doi.org/10.1063/1.1305546
321.
321.A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.946
322.
322.T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, and H. Koinuma, Appl. Phys. Lett. 82, 532 (2003).
http://dx.doi.org/10.1063/1.1540220
323.
323.S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, Appl. Phys. Lett. 80, 1924 (2002).
http://dx.doi.org/10.1063/1.1461051
324.
324.R. Matz and H. Lütz, Appl. Phys. 18, 123 (1979).
http://dx.doi.org/10.1007/BF00934406
325.
325.W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, J. Phys. Chem. Solids 58, 853 (1997).
http://dx.doi.org/10.1016/S0022-3697(96)00224-7
326.
326.H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys., Part 1 36, 6237 (1997).
http://dx.doi.org/10.1143/JJAP.36.6237
327.
327.G. E. Jellison, Jr. and L. A. Boatner, Phys. Rev. B 58, 3586 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3586
328.
328.C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, Appl. Phys. Lett. 76, 979 (2000).
http://dx.doi.org/10.1063/1.125912
329.
329.R. Schmidt et al., Appl. Phys. Lett. 82, 2260 (2003).
http://dx.doi.org/10.1063/1.1565185
330.
330.K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003).
http://dx.doi.org/10.1063/1.1591064
331.
331.D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, Phys. Rev. B 60, 2340 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2340
332.
332.C. Klingshirn, Phys. Status Solidi B 71, 547 (1975).
333.
333.Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoç, and H. O. Everitt, Appl. Phys. Lett. 84, 3223 (2004).
http://dx.doi.org/10.1063/1.1713034
334.
334.Y. Chen, N. T. Tuan, Y. Segawa, H.-J. Ko, S.-K. Hong, and T. Yao, Appl. Phys. Lett. 78, 1469 (2001).
http://dx.doi.org/10.1063/1.1355665
335.
335.D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).
http://dx.doi.org/10.1063/1.122077
336.
336.D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth 184–185, 605 (1998).
337.
337.A. Yamamoto, T. Kido, T. Goto, Y. Chen, T. Yao, and A. Kasuya, Appl. Phys. Lett. 75, 469 (1999).
http://dx.doi.org/10.1063/1.124411
338.
338.P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, J. Cryst. Growth 184–185, 601 (1998).
339.
339.M. Kawasaki et al., Mater. Sci. Eng., B 56, 239 (1998).
http://dx.doi.org/10.1016/S0921-5107(98)00248-7
340.
340.P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00216-0
341.
341.A. Ohtomo et al., Mater. Sci. Eng., B 54, 24 (1998).
http://dx.doi.org/10.1016/S0921-5107(98)00120-2
342.
342.N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
http://dx.doi.org/10.1038/368436a0
343.
343.D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1739
344.
344.H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, Appl. Phys. Lett. 73, 3656 (1998).
http://dx.doi.org/10.1063/1.122853
345.
345.H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2278
346.
346.A. Mitra and R. K. Thareja, J. Appl. Phys. 89, 2025 (2001).
http://dx.doi.org/10.1063/1.1342803
347.
347.D. S. Wiersma and A. Lagendijk, Phys. Rev. E 54, 4256 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.4256
348.
348.P. W. Anderson, Phys. Rev. 109, 1492 (1958).
http://dx.doi.org/10.1103/PhysRev.109.1492
349.
349.I. P. Kuz’mina and V. A. Nikitenko, Zinc Oxides: Production and Optical Properties (Nauka, Moscow, 1984).
350.
350.D. I. Dimova-Alyakova, M. M. Malov, V. V. Dmitriev, V. D. Chernyi, and M. N. Mendakov, Moscow Energetical Institute Transactions (Trudy MEI) 192, 78 (1974) (in Russian).
351.
351.S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999).
http://dx.doi.org/10.1063/1.125141
352.
352.S. J. Chen et al., J. Cryst. Growth 240, 467 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)00925-9
353.
353.Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, J. Appl. Phys. 94, 354 (2003).
http://dx.doi.org/10.1063/1.1577819
354.
354.Ya. I. Alivov, A. V. Chernykh, M. V. Chukichev, and R. Y. Korotkov, Thin Solid Films 473, 241 (2005).
355.
355.A. Ohtomo et al., Appl. Phys. Lett. 77, 2204 (2000).
http://dx.doi.org/10.1063/1.1315340
356.
356.H. D. Sun et al., Appl. Phys. Lett. 77, 4250 (2000).
http://dx.doi.org/10.1063/1.1333687
357.
357.B. Guo, Z. R. Qiu, and K. S. Wong, Appl. Phys. Lett. 82, 2290 (2003).
http://dx.doi.org/10.1063/1.1566482
358.
358.T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, and H. Koinuma, Appl. Phys. Lett. 82, 532 (2003).
http://dx.doi.org/10.1063/1.1540220
359.
359.A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61, 15019 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.15019
360.
360.C. G. Van de Walle, Physica B 308–310, 899 (2001).
361.
361.J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
http://dx.doi.org/10.1063/1.117767
362.
362.A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.946
363.
363.Y. Yan, S. B. Zhang, and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5723
364.
364.K. Thonke, T. Gruber, N. Trofilov, R. Schönfelder, A. Waag, and R. Sauer, Physica B 308–310, 945 (2001).
365.
365.D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
http://dx.doi.org/10.1063/1.1504875
366.
366.J. F. Rommeluère, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sallet, and Y. Marfaing, Appl. Phys. Lett. 83, 287 (2003).
http://dx.doi.org/10.1063/1.1592621
367.
367.H. Matsui, H. Saeki, H. Tabata, and T. Kawai, J. Electrochem. Soc. 150, G508 (2003).
http://dx.doi.org/10.1149/1.1594732
368.
368.A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, and M. Dworzak, Phys. Status Solidi B 234, R7 (2002).
http://dx.doi.org/10.1002/1521-3951(200212)234:33.0.CO;2-D
369.
369.C. Morhain et al., Phys. Status Solidi B 229, 881 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<881::AID-PSSB881>3.0.CO;2-3
370.
370.Y. R. Ryu, T. S. Lee, and H. W. White, Appl. Phys. Lett. 83, 87 (2003).
http://dx.doi.org/10.1063/1.1590423
371.
371.R. Dingle, Phys. Rev. Lett. 23, 579 (1969).
http://dx.doi.org/10.1103/PhysRevLett.23.579
372.
372.R. E. Dietz, H. Kamimura, M. D. Sturge, and A. Yariv, Phys. Rev. 132, 1559 (1963).
http://dx.doi.org/10.1103/PhysRev.132.1559
373.
373.E. Mollwo, G. Müller, and P. Wagner, Solid State Commun. 13, 1283 (1973).
374.
374.B. M. Kimpel and H. J. Schulz, Phys. Rev. B 43, 9938 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.9938
375.
375.I. J. Broser, R. K. F. Germer, H.-J. E. Schulz, and K. P. Wisznewski, Solid-State Electron. 21, 1597 (1978).
http://dx.doi.org/10.1016/0038-1101(78)90247-2
376.
376.P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, J. Phys.: Condens. Matter 10, 2007 (1998).
http://dx.doi.org/10.1088/0953-8984/10/9/007
377.
377.P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, Phys. Rev. B 57, 9690 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9690
378.
378.P. J. Dean, D. J. Robbins, S. G. Bishop, J. A. Savage, and P. Porteous, J. Phys. C 14, 2847 (1981).
http://dx.doi.org/10.1088/0022-3719/14/20/021
379.
379.P. Dahan, V. Fleurov, and K. Kikoin, J. Phys.: Condens. Matter 9, 5355 (1997).
380.
380.R. Kuhnert and R. Helbig, J. Lumin. 26, 203 (1981).
http://dx.doi.org/10.1016/0022-2313(81)90182-4
381.
381.D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones, and J. Jenny, Solid State Commun. 106, 701 (1998).
http://dx.doi.org/10.1016/S0038-1098(98)00048-9
382.
382.D. C. Reynolds, D. C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).
http://dx.doi.org/10.1063/1.1356432
383.
383.N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).
http://dx.doi.org/10.1063/1.1494125
384.
384.Ya. I. Alivov, M. V. Chukichev, and V. A. Nikitenko, Semiconductors 38, 34 (2004).
385.
385.F. H. Leiter, H. R. Alves, N. G. Romanov, D. M. Hoffmann, and B. K. Meyer, Physica B 308–310, 908 (2001).
386.
386.X. Yang et al., J. Cryst. Growth 252, 275 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)00898-4
387.
387.B. Guo, Z. R. Qiu, and K. S. Wong, Appl. Phys. Lett. 82, 2290 (2003).
http://dx.doi.org/10.1063/1.1566482
388.
388.H.-J. Egelhaaf and D. Oelkrug, J. Cryst. Growth 161, 190 (1996).
http://dx.doi.org/10.1016/0022-0248(95)00634-6
389.
389.N. O. Korsunska, L. V. Borkovska, B. M. Bulakh, L. Yu. Khomenkova, V. I. Kushnirenko, and I. V. Markevich, J. Lumin. 102–103, 733 (2003).
390.
390.B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).
http://dx.doi.org/10.1063/1.1394173
391.
391.K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996);
http://dx.doi.org/10.1063/1.116699
391.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996);
http://dx.doi.org/10.1063/1.362349
391.K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. Caruso, M. J. Hampden-Smith, and T. T. Kodas, J. Lumin. 75, 11 (1997).
http://dx.doi.org/10.1016/S0022-2313(96)00096-8
392.
392.S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).
http://dx.doi.org/10.1063/1.368295
393.
393.F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hoffmann, and B. K. Meyer, Phys. Status Solidi B 226, R4 (2001).
http://dx.doi.org/10.1002/1521-3951(200107)226:13.0.CO;2-F
394.
394.F. H. Leiter, H. R. Alves, N. G. Romanov, D. M. Hoffmann, and B. K. Meyer, Physica B 340–342, 201 (2003).
395.
395.M. A. Reshchikov and R. Y. Korotkov, Phys. Rev. B 64, 115205 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.115205
396.
396.R. T. Cox, D. Block, A. Hervé, R. Picard, C. Santier, and R. Helbig, Solid State Commun. 25, 77 (1978).
http://dx.doi.org/10.1016/0038-1098(78)90361-7
397.
397.G. F. Neumark, Phys. Rev. Lett. 62, 1800 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1800
398.
398.D. J. Chadi, Phys. Rev. Lett. 72, 534 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.534
399.
399.S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. Lett. 84, 1232 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1232
400.
400.T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., Part 2 24, L781 (1985).
401.
401.S. B. Zhang, S.-H. Wei, and A. Zunger, J. Appl. Phys. 83, 3192 (1998).
http://dx.doi.org/10.1063/1.367120
402.
402.D. B. Laks, C. G. Van de Walle, G. F. Neumark, and S. T. Pantelides, Appl. Phys. Lett. 63, 1375 (1993).
http://dx.doi.org/10.1063/1.109681
403.
403.S. F. J. Cox et al., Phys. Rev. Lett. 86, 2601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2601
404.
404.Y. M. Strzhemechny et al., Appl. Phys. Lett. 84, 2545 (2004).
http://dx.doi.org/10.1063/1.1695440
405.
405.H. Kato, M. Sano, K. Miyamoto, and T. Yao, J. Cryst. Growth 237–239, 538 (2002).
406.
406.S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Jpn. J. Appl. Phys., Part 2 36, L1078 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1078
407.
407.B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, Thin Solid Films 260, 19 (1995).
http://dx.doi.org/10.1016/0040-6090(94)09485-3
408.
408.V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, Thin Solid Films 427, 401 (2003).
409.
409.Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, J. Cryst. Growth 259, 130 (2003).
http://dx.doi.org/10.1016/j.jcrysgro.2003.07.007
410.
410.M. Chen, Z. Pei, W. Xi, C. Sun, and L. Wen, Mater. Res. Soc. Symp. Proc. 666, F1 (2001).
411.
411.H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett. 77, 3761 (2000).
http://dx.doi.org/10.1063/1.1331089
412.
412.T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., Part 2 23, L280 (1984).
413.
413.W. Walukiewicz, Phys. Rev. B 50, 5221 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.5221
414.
414.C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, Phys. Rev. B 47, 9425 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.9425
415.
415.O. F. Schirmer, J. Phys. Chem. Solids 29, 1407 (1968).
http://dx.doi.org/10.1016/0022-3697(68)90193-5
416.
416.A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, J. Vac. Sci. Technol. A 9, 286 (1991).
http://dx.doi.org/10.1116/1.577502
417.
417.Y. Kanai, Jpn. J. Appl. Phys., Part 1 30, 703 (1991).
http://dx.doi.org/10.1143/JJAP.30.703
418.
418.Y. Kanai, Jpn. J. Appl. Phys., Part 1 30, 2021 (1991).
http://dx.doi.org/10.1143/JJAP.30.2021
419.
419.C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073202
420.
420.C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, Phys. Rev. B 47, 9425 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.9425
421.
421.D. B. Laks, C. G. Van de Walle, G. F. Neumark, and S. T. Pantelides, Phys. Rev. Lett. 66, 648 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.648
422.
422.A. Garcia and J. E. Northrup, Phys. Rev. Lett. 74, 1131 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1131
423.
423.M. L. Cohen, Phys. Scr., T T1, 5 (1982).
424.
424.J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).
http://dx.doi.org/10.1088/0022-3719/12/21/009
425.
425.D. C. Look, R. L. Jones, J. R. Sizelove, N. Y. Garces, N. C. Giles, and L. E. Halliburton, Phys. Status Solidi A 195, 171 (2004).
http://dx.doi.org/10.1002/pssa.200306274
426.
426.A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.946
427.
427.Z. L. Wu, J. L. Merz, C. J. Werkhoven, B. J. Fitzpatrick, and R. N. Bhargava, Appl. Phys. Lett. 40, 345 (1982).
http://dx.doi.org/10.1063/1.93093
428.
428.H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
http://dx.doi.org/10.1063/1.358463
429.
429.E.-C. Lee, Y.-S. Kim, Y.-G. Jin, and K. J. Chang, Phys. Rev. B 64, 85120 (2001).
430.
430.R. M. Park, M. B. Troffer, C. M. Rouleau, J. M. DePuydt, and M. A. Hasse, Appl. Phys. Lett. 57, 2127 (1990).
http://dx.doi.org/10.1063/1.103919
431.
431.L. Svob, C. Thiandoume, A. Lusson, M. Bouanani, Y. Marfaing, and O. Gorochov, Appl. Phys. Lett. 76, 1695 (2000).
http://dx.doi.org/10.1063/1.126139
432.
432.H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, Appl. Phys. Lett. 70, 1143 (1997).
http://dx.doi.org/10.1063/1.118481
433.
433.K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, J. Cryst. Growth 209, 526 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00613-2
434.
434.A. B. M. A. Ashrafi, I. Suemune, H. Kumano, and S. Tanaka, Jpn. J. Appl. Phys., Part 2 41, L1281 (2002).
http://dx.doi.org/10.1143/JJAP.41.L1281
435.
435.K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1453
436.
436.Z.-Z. Ye, J.-G. Lu, H.-H. Chen, Y.-Z. Zhang, L. Wang, B.-H. Zhao, and J.-Y. Huang, J. Cryst. Growth 253, 258 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01007-8
437.
437.J. Wang et al., J. Cryst. Growth 255, 293 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01241-7
438.
438.J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang, Mater. Lett. 57, 3311 (2003).
http://dx.doi.org/10.1016/S0167-577X(03)00054-5
439.
439.Y. Sato and S. Sato, Thin Solid Films 281–282, 445 (1996).
440.
440.X.-L. Guo, H. Tabata, and T. Kawai, J. Cryst. Growth 237–239, 544 (2002).
441.
441.Y. Yan, S. B. Zhang, and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5723
442.
442.X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, J. Cryst. Growth 226, 123 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01367-7
443.
443.X. Li, Y. Yan, T. A. Gessert, C. L. Perkins, D. Young, C. DeHart, M. Young, and T. J. Coutts, J. Vac. Sci. Technol. A 21, 1342 (2003).
http://dx.doi.org/10.1116/1.1584036
444.
444.X. Li, Y. Yan, T. A. Gessert, C. DeHart, C. L. Perkins, D. Young, and T. J. Coutts, Electrochem. Solid-State Lett. 6, C56 (2003).
http://dx.doi.org/10.1149/1.1554292
445.
445.J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Vac. Sci. Technol. B 22, 94 (2004).
http://dx.doi.org/10.1116/1.1641057
446.
446.C.-C. Lin, S.-Y. Chen, S.-Y. Cheng, and H.-Y. Lee, Appl. Phys. Lett. 84, 5040 (2004).
http://dx.doi.org/10.1063/1.1763640
447.
447.C. Wang, Z. Ji, K. Liu, Y. Xiang, and Z. Ye, J. Cryst. Growth 259, 279 (2003).
448.
448.N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, and D. C. Look, Appl. Phys. Lett. 80, 1334 (2002).
http://dx.doi.org/10.1063/1.1450041
449.
449.N. Y. Garces, L. Wang, N. C. Giles, L. E. Halliburton, G. Cantwell, and D. B. Eason, J. Appl. Phys. 94, 519 (2003).
http://dx.doi.org/10.1063/1.1580193
450.
450.J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, Mater. Sci. Semicond. Process. 5, 491 (2003).
451.
451.K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, J. Cryst. Growth 209, 526 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00613-2
452.
452.A. Zeuner et al., Phys. Status Solidi C 1, 731 (2004).
453.
453.S. Yamauchi, Y. Goto, and T. Hariu, J. Cryst. Growth 260, 1 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.08.002
454.
454.T. Yamamoto and H. Katayama-Yoshida, J. Cryst. Growth 214/215, 552 (2000);
454.T. Yamamoto and H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 238, L166 (1999).
http://dx.doi.org/10.1143/JJAP.38.L166
455.
455.T. Yamamoto, Thin Solid Films 420–421, 100 (2002).
456.
456.A. Tsukazaki et al., Appl. Phys. Lett. 81, 235 (2002).
http://dx.doi.org/10.1063/1.1491294
457.
457.K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki, Appl. Phys. Lett. 79, 4139 (2001).
http://dx.doi.org/10.1063/1.1424066
458.
458.K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki, J. Cryst. Growth 237–239, 503 (2002).
459.
459.T. Ohshima, T. Ikegami, K. Ebihara, J. Asmussen, and R. Thareja, Thin Solid Films 435, 49 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00383-3
460.
460.M. Sumiya, A. Tsukazaki, S. Fuke, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Surf. Sci. 223, 206 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00923-1
461.
461.Ya. I. Alivov, D. C. Look, B. M. Ataev, M. V. Chukichev, V. V. Mamedov, V. I. Zinenko, Yu. A. Agafonov, and A. N. Pustovit, Solid-State Electron. 48, 2343 (2004).
http://dx.doi.org/10.1016/j.sse.2004.05.063
462.
462.T. Ohshima, T. Ikegami, K. Ebihara, J. Asmussen, and R. Thareja, Thin Solid Films 435, 49 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00383-3
463.
463.M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys., Part 2 38, L1205 (1999).
http://dx.doi.org/10.1143/JJAP.38.L1205
464.
464.A. V. Singh, R. M. Mehra, A. Wakahara, and A. Yoshida, J. Appl. Phys. 93, 396 (2003).
http://dx.doi.org/10.1063/1.1527210
465.
465.J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, Appl. Phys. Lett. 84, 541 (2004).
http://dx.doi.org/10.1063/1.1644331
466.
466.Z.-Z. Ye, Z.-G. Fei, J.-G. Lu, Z.-H. Zhang, L.-P. Zhu, B.-H. Zhao, and J.-Y. Huang, J. Cryst. Growth 265, 127 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.12.059
467.
467.T. Aoki, Y. Hatanaka, and D. C. Look, Appl. Phys. Lett. 76, 3257 (2000).
http://dx.doi.org/10.1063/1.126599
468.
468.K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003).
http://dx.doi.org/10.1063/1.1591064
469.
469.Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Cryst. Growth 216, 330 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00437-1
470.
470.M. K. Ryu, S. H. Lee, and M. S. Jang, J. Appl. Phys. 92, 158 (2002).
471.
471.C. Morhain et al., Phys. Status Solidi B 229, 881 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<881::AID-PSSB881>3.0.CO;2-3
472.
472.Y. W. Heo, S. J. Park, K. Ip, S. J. Pearton, and D. P. Norton, Appl. Phys. Lett. 83, 1128 (2003).
http://dx.doi.org/10.1063/1.1594835
473.
473.S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang, and J. S. Kang, Thin Solid Films 473, 31 (2005).
474.
474.S.-J. Park (private communication).
475.
475.Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton, Appl. Phys. Lett. 84, 3474 (2004).
http://dx.doi.org/10.1063/1.1737795
476.
476.O. Lopatiuk et al., Appl. Phys. Lett. 86, 012105 (2005).
http://dx.doi.org/10.1063/1.1844037
477.
477.K. Ip, Y. W. Heo, D. P. Norton, S. J. Pearton, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 85, 1169 (2004).
http://dx.doi.org/10.1063/1.1783015
478.
478.C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic, San Diego, 1991).
479.
479.J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
http://dx.doi.org/10.1063/1.341700
480.
480.G. A. Prinz, Science 282, 1660 (1998).
http://dx.doi.org/10.1126/science.282.5394.1660
481.
481.N. Samarth and D. D. Awschalom, in Quantum Circuits and Devices, edited by K. Ismail, S. Bandyopadhyay, and J. P. Leburton (Imperial College Press, London, 1998), pp. 136141.
482.
482.H. Ohno, Science 281, 951 (1998).
http://dx.doi.org/10.1126/science.281.5379.951
483.
483.B. Beschoten, P. A. Crowell, I. Malajovich, D. D. Awschalom, F. Matsukura, A. Shen, and H. Ohno, Phys. Rev. Lett. 83, 3073 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.3073
484.
484.I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, Nature (London) 411, 770 (2001).
http://dx.doi.org/10.1038/35081014
485.
485.K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).
http://dx.doi.org/10.1063/1.1384478
486.
486.H. Saeki, H. Tabata, and T. Kawai, Solid State Commun. 120, 439 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00400-8
487.
487.K. Rode, A. Anane, R. Mattana, J.-P. Contour, O. Durand, and R. LeBourgeois, J. Appl. Phys. 93, 7676 (2003).
http://dx.doi.org/10.1063/1.1556115
488.
488.P. Sharma et al., Nat. Mater. 2, 673 (2003).
http://dx.doi.org/10.1038/nmat984
489.
489.S. Ramachandran, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 84, 5255 (2004).
http://dx.doi.org/10.1063/1.1764936
490.
490.H.-T. Lin, T.-S. Chin, J.-C. Shih, S.-H. Lin, T.-M. Hong, R.-T. Huang, F.-R. Chen, and J.-J. Kai, Appl. Phys. Lett. 85, 621 (2004).
http://dx.doi.org/10.1063/1.1775877
491.
491.M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts, and S. M. Bedair, Appl. Phys. Lett. 79, 3473 (2001).
http://dx.doi.org/10.1063/1.1419231
492.
492.M. Linnarsson, E. Janzén, B. Monemar, M. Kleverman, and A. Thilderkvist, Phys. Rev. B 55, 6938 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.6938
493.
493.K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, and H. Koinuma, J. Appl. Phys. 89, 7284 (2001).
http://dx.doi.org/10.1063/1.1356035
494.
494.Z. Jin et al., Appl. Phys. Lett. 78, 3824 (2001).
http://dx.doi.org/10.1063/1.1377856
495.
495.T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999).
http://dx.doi.org/10.1063/1.125353
496.
496.T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78, 958 (2001).
http://dx.doi.org/10.1063/1.1348323
497.
497.S. W. Jung, S.-J. An, G.-C. Yi, C. U. Jung, S.-I. Lee, and S. Cho, Appl. Phys. Lett. 80, 4561 (2002).
http://dx.doi.org/10.1063/1.1487927
498.
498.D. P. Norton, S. J. Pearton, A. F. Hebard, N. Theodoropoulou, L. A. Boatner, and R. G. Wilson, Appl. Phys. Lett. 82, 239 (2003).
http://dx.doi.org/10.1063/1.1537457
499.
499.Y. M. Kim, M. Yoon, I.-W. Park, Y. J. Park, and J. H. Lyou, Solid State Commun. 129, 175 (2004).
http://dx.doi.org/10.1016/j.ssc.2003.09.035
500.
500.D. P. Norton et al., Appl. Phys. Lett. 83, 5488 (2003).
http://dx.doi.org/10.1063/1.1637719
501.
501.T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito, Physica C 10, 260 (2001).
http://dx.doi.org/10.1016/S1386-9477(01)00095-9
502.
502.M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87, 107203 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.107203
503.
503.A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247201 (2001).
http://dx.doi.org/10.1103/PhysRevLett.88.247201
504.
504.T. Dietl, F. Matsukura, and H. Ohno, Phys. Rev. B 66, 033203 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.033203
505.
505.S. Das Sarma, E. H. Hwang, and A. Kaminski, Phys. Rev. B 67, 155201 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155201
506.
506.J. Warnock and P. A. Wolff, Phys. Rev. B 31, 6579 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.6579
507.
507.M. Sawicki, T. Dietl, J. Kossut, J. Igalson, T. Wojtowicz, and W. Plesiewicz, Phys. Rev. Lett. 56, 508 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.508
508.
508.J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 73 (2005).
509.
509.T. Dietl and J. Spalek, Phys. Rev. Lett. 48, 355 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.355
510.
510.C. Zener, Phys. Rev. 81, 440 (1950);
http://dx.doi.org/10.1103/PhysRev.81.440
510.C. Zener, Phys. Rev.83, 299 (1950).
http://dx.doi.org/10.1103/PhysRev.83.299
511.
511.T. Dietl, Nat. Mater. 2, 646 (2003).
http://dx.doi.org/10.1038/nmat989
512.
512.K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39, L555 (2000).
http://dx.doi.org/10.1143/JJAP.39.L555
513.
513.K. Sato and H. Katayama-Yoshida, Physica B 308–310, 904 (2001).
514.
514.K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002).
http://dx.doi.org/10.1088/0268-1242/17/4/309
515.
515.K. Nishizawa and O. Sakai, Physica B 281–282, 468 (2000).
516.
516.J. Schliemann, J. Konig, and A. H. MacDonald, Phys. Rev. B 64, 165201 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.165201
517.
517.J. Konig, H. H. Lin, and A. H. MacDonald, Phys. Rev. Lett. 84, 5628 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5628
518.
518.T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald, Phys. Rev. B 59, 9818 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.9818
519.
519.Q. Wang and P. Jena, Appl. Phys. Lett. 84, 4170 (2004).
http://dx.doi.org/10.1063/1.1755834
520.
520.S. W. Yoon, S.-B. Cho, S. C. We, S. Yoon, B. J. Suh, H. K. Song, and Y. J. Shin, J. Appl. Phys. 93, 7879 (2003).
http://dx.doi.org/10.1063/1.1556126
521.
521.T. Sekiguchi, K. Haga, and K. Inaba, J. Cryst. Growth 214, 68 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00062-2
522.
522.J. H. Kim, H. Kim, D. Kim, Y. E. Ihm, and W. K. Choo, J. Appl. Phys. 92, 6066 (2002).
http://dx.doi.org/10.1063/1.1513890
523.
523.S. J. Pearton et al., J. Appl. Phys. 93, 1 (2003).
http://dx.doi.org/10.1063/1.1517164
524.
524.L. W. Guo, D. L. Peng, H. Makino, K. Inaba, H. J. Ko, K. Sumiyama, and T. Yao, J. Magn. Magn. Mater. 213, 321 (2000).
http://dx.doi.org/10.1016/S0304-8853(00)00008-1
525.
525.A. Tiwari, C. Jin, A. Kvit, D. Kumar, J. F. Muth, and J. Narayan, Solid State Commun. 121, 371 (2002).
http://dx.doi.org/10.1016/S0038-1098(01)00464-1
526.
526.X. M. Cheng and C. L. Chien, J. Appl. Phys. 93, 7876 (2003).
http://dx.doi.org/10.1063/1.1556125
527.
527.A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, and H. Koinuma, Appl. Phys. Lett. 72, 2466 (1998).
http://dx.doi.org/10.1063/1.121384
528.
528.A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 4088 (1999).
http://dx.doi.org/10.1063/1.125545
529.
529.S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, Appl. Phys. Lett. 80, 1529 (2002).
http://dx.doi.org/10.1063/1.1456266
530.
530.T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, Appl. Phys. Lett. 84, 5359 (2004).
http://dx.doi.org/10.1063/1.1767273
531.
531.K. Ogata, K. Koike, T. Tanite, T. Komuro, F. Yan, S. Sasa, M. Inoue, and M. Yano, J. Cryst. Growth 251, 623 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02277-7
532.
532.T. Minemmoto, T. Negami, S. Nishiwaki, H. Takakura, and Y. Hamakawa, Thin Solid Films 372, 173 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01009-9
533.
533.S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, Solid-State Electron. 46, 1633 (2002).
534.
534.T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, Physica E (Amsterdam) 21, 671 (2004).
535.
535.F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, and Y. S. Yu, J. Appl. Phys. 95, 4772 (2004).
http://dx.doi.org/10.1063/1.1690091
536.
536.D. J. Cohen, K. C. Ruthe, and S. A. Barnett, J. Appl. Phys. 96, 459 (2004).
http://dx.doi.org/10.1063/1.1760239
537.
537.A. Ohtomo et al., Appl. Phys. Lett. 77, 2204 (2000).
http://dx.doi.org/10.1063/1.1315340
538.
538.A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 75, 980 (1999).
http://dx.doi.org/10.1063/1.124573
539.
539.H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, J. Appl. Phys. 91, 1993 (2002).
http://dx.doi.org/10.1063/1.1445280
540.
540.T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett. 78, 1237 (2001).
http://dx.doi.org/10.1063/1.1350632
541.
541.T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett. 77, 1632 (2000).
http://dx.doi.org/10.1063/1.1308540
542.
542.D. W. Ma, Z. Z. Ye, and L. L. Chen, Phys. Status Solidi A 201, 2929 (2004).
543.
543.K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita, and S. Fujita, J. Cryst. Growth 237–239, 514 (2002).
544.
544.T. Gruber et al., Appl. Phys. Lett. 83, 3290 (2003).
http://dx.doi.org/10.1063/1.1620674
545.
545.T. Tanabe, H. Takasu, S. Fujita, and S. Fujita, J. Cryst. Growth 237–239, 514 (2002).
546.
546.O. Vigil, L. Vaillant, F. Cruz, G. Santana, A. Morales-Acevedo, and G. Contreras-Puente, Thin Solid Films 361–362, 53 (2000).
547.
547.Y.-S. Choi, C.-C. Lee, and S. M. Cho, Thin Solid Films 289, 153 (1996).
548.
548.J. A. Van Vechten and T. K. Bergstresser, Phys. Rev. B 1, 3351 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.3351
549.
549.E. R. Segnit and A. E. Holland, J. Am. Ceram. Soc. 48, 412 (1965).
550.
550.R. P. Koffyberg, Phys. Rev. B 13, 4470 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.4470
551.
551.M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoç, Appl. Phys. Lett. 64, 1003 (1994).
http://dx.doi.org/10.1063/1.111961
552.
552.V. Hoppe, D. Stachel, and D. Beyer, Phys. Scr., T T57, 122 (1994).
553.
553.A. A. Iliadis, R. D. Vispute, T. Venkatesan, and K. A. Jones, Thin Solid Films 420–421, 478 (2002).
554.
554.H. Ishikawa, K. Tsukui, Y. Koide, N. Teraguchi, Y. Tomomura, A. Suzuki, and M. Murakami, J. Vac. Sci. Technol. B 14, 1812 (1996).
http://dx.doi.org/10.1116/1.588561
555.
555.H. Sheng, N. W. Emanetoglu, S. Muthukumar, S. Feng, and Y. Lu, J. Electron. Mater. 31, 811 (2002).
556.
556.H. K. Kim, S. H. Han, T. Y. Seong, and W. K. Choi, Appl. Phys. Lett. 77, 1647 (2000).
http://dx.doi.org/10.1063/1.1308527
557.
557.H. K. Kim, S. H. Han, T. Y. Seong, and W. K. Choi, J. Electrochem. Soc. 148, G114 (2001).
http://dx.doi.org/10.1149/1.1346617
558.
558.Y. J. Lin and C. T. Lee, Appl. Phys. Lett. 77, 3986 (2000).
http://dx.doi.org/10.1063/1.1332827
559.
559.H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong, and I. Adesida, J. Appl. Phys. 94, 4225 (2003).
http://dx.doi.org/10.1063/1.1604475
560.
560.T. Akane, K. Sugioka, and K. Midorikawa, J. Vac. Sci. Technol. B 18, 1406 (2000).
http://dx.doi.org/10.1116/1.591479
561.
561.J. M. Lee, K. K. Kim, S. J. Park, and W. K. Choi, Appl. Phys. Lett. 78, 3842 (2001).
http://dx.doi.org/10.1063/1.1379061
562.
562.G. S. Marlow and M. B. Das, Solid-State Electron. 25, 91 (1982).
http://dx.doi.org/10.1016/0038-1101(82)90036-3
563.
563.H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong, and Y. S. Yoon, Jpn. J. Appl. Phys., Part 2 41, L546 (2002).
http://dx.doi.org/10.1143/JJAP.41.L546
564.
564.A. Inumpudi, A. A. Iliadis, S. Krishnamoorthy, S. Choopun, R. D. Vispute, and T. Venkatesan, Solid-State Electron. 46, 1665 (2002).
http://dx.doi.org/10.1016/S0038-1101(02)00176-4
565.
565.L. J. Brillson, J. Vac. Sci. Technol. 15, 1378 (1978).
http://dx.doi.org/10.1116/1.569792
566.
566.K. Ip et al., J. Vac. Sci. Technol. B 21, 2378 (2003).
http://dx.doi.org/10.1116/1.1621651
567.
567.K. Ip, Y. Heo, K. Baik, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Phys. Lett. 84, 544 (2004).
http://dx.doi.org/10.1063/1.1644318
568.
568.K. Ip, Y. Heo, K. Baik, D. P. Norton, S. J. Pearton, and F. Ren, J. Vac. Sci. Technol. B 22, 171 (2004).
http://dx.doi.org/10.1116/1.1641060
569.
569.S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00830-2
570.
570.H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).
http://dx.doi.org/10.1063/1.1463700
571.
571.J. C. Simpson and J. F. Cordora, J. Appl. Phys. 63, 1781 (1988).
http://dx.doi.org/10.1063/1.339919
572.
572.G. Xiong, J. Wilkinson, M. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams, Appl. Phys. Lett. 80, 1195 (2002).
http://dx.doi.org/10.1063/1.1449528
573.
573.B. J. Koppa, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).
http://dx.doi.org/10.1063/1.1536264
574.
574.N. Ohashi, J. Tanaka, T. Ohgaki, H. Haneda, M. Ozawa, and T. Tsurumi, J. Mater. Res. 17, 1529 (2002).
575.
575.F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven, and D. C. Look, Appl. Phys. Lett. 79, 3074 (2001).
http://dx.doi.org/10.1063/1.1415050
576.
576.S. Kim, B. Kang, F. Ren, Y. Heo, K. Ip, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 84, 1904 (2004).
http://dx.doi.org/10.1063/1.1669082
577.
577.J. H. Lim, K. K. Kim, D. K. Hwang, H. K. Kim, J. H. Oh, and S. J. Park, J. Electrochem. Soc. 152, G179 (2005).
http://dx.doi.org/10.1149/1.1855832
578.
578.A. Y. Polyakov, N. B. Smirnov, E. A. Kozhukhova, V. I. Vdodin, K. Ip, Y. W. Heo, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 83, 1575 (2003).
http://dx.doi.org/10.1063/1.1604173
579.
579.C. A. Mead, Phys. Lett. 18, 218 (1965).
http://dx.doi.org/10.1016/0031-9163(65)90295-7
580.
580.R. C. Neville and C. A. Mead, J. Appl. Phys. 41, 3795 (1970).
http://dx.doi.org/10.1063/1.1659509
581.
581.S. V. Slobodchikov, Kh. M. Salikhov, E. V. Russu, and Yu. G. Malinin, Semiconductors 35, 464 (2001).
http://dx.doi.org/10.1134/1.1365196
582.
582.S.-H. Kim, H.-K. Kim, and T.-Y. Seong, Appl. Phys. Lett. 86, 112101 (2005).
http://dx.doi.org/10.1063/1.1862772
583.
583.K. Ip et al., Appl. Phys. Lett. 84, 5133 (2004).
http://dx.doi.org/10.1063/1.1764940
584.
584.K. Ip et al., Appl. Surf. Sci. 236, 387 (2004).
585.
585.K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 2835 (2004).
http://dx.doi.org/10.1063/1.1705726
586.
586.S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
587.
587.G. Xiong, J. Wilkinson, S. Tüzemen, K. B. Ucer, and R. T. Williams, Proc. SPIE 256, 4644 (2002).
588.
588.I.-S. Jeong, J.-H. Kim, and S. Im, Appl. Phys. Lett. 83, 2946 (2003).
http://dx.doi.org/10.1063/1.1616663
589.
589.S. E. Nikitin, Yu. A. Nikolaev, I. K. Polushina, V. Yu. Rud, Yu. V. Rud, and E. I. Terukov, Semiconductors 37, 1329 (2003).
590.
590.Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, Appl. Phys. Lett. 83, 2943 (2003).
http://dx.doi.org/10.1063/1.1615308
591.
591.Q.-X. Yu, B. Xu, Q.-H. Wu, Y. Liao, G.-Z. Wang, R.-C. Fang, H.-Y. Lee, and C.-T. Lee, Appl. Phys. Lett. 83, 4713 (2003).
http://dx.doi.org/10.1063/1.1632029
592.
592.Ya. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003).
http://dx.doi.org/10.1063/1.1632537
593.
593.H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, Appl. Phys. Lett. 77, 475 (2000).
http://dx.doi.org/10.1063/1.127015
594.
594.A. Kudo, H. Yanagi, K. Ueda, H. Hosono, K. Kawazoe, and Y. Yano, Appl. Phys. Lett. 75, 2851 (1999).
http://dx.doi.org/10.1063/1.125171
595.
595.H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 83, 1029 (2003).
http://dx.doi.org/10.1063/1.1598624
596.
596.A. E. Tsurkan, N. D. Fedotova, L. V. Kicherman, and P. G. Pas’ko, Semicond. Semimetals 6, 1183 (1975).
597.
597.I. T. Drapak, Semiconductors 2, 624 (1968).
598.
598.S. Ishizuka et al., Phys. Status Solidi C 1, 1067 (2004).
599.
599.J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, J. Appl. Phys. 51, 4260 (1980).
http://dx.doi.org/10.1063/1.328243
600.
600.Ya. I. Alivov, Ü. Özgür, S. Doğan, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J. Xie, Q. Fan, and H. Morkoç, Appl. Phys. Lett. 86, 241108 (2005).
http://dx.doi.org/10.1063/1.1949730
601.
601.Ya. I. Alivov, D. Johnstone, Ü. Özgür, V. Avrutin, Q. Fan, S. S. Akarca-Biyikli, and H. Morkoç, Jpn. J. Appl. Phys., Part 1 (to be published).
602.
602.C.-X. Wang, G.-W. Yang, H.-W. Liu, Y.-H. Han, J.-F. Luo, C.-X. Gao, and G.-T. Zou, Appl. Phys. Lett. 84, 2427 (2004).
http://dx.doi.org/10.1063/1.1689397
603.
603.H. Ohta, H. Mizoguchi, M. Hirano, S. Narushima, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 82, 823 (2003).
http://dx.doi.org/10.1063/1.1544436
604.
604.S. E. Nikitin, Yu. A. Nikolaev, V. Yu. Rud, Yu. V. Rud, E. I. Terukov, N. Fernelius, and J. Goldstein, Semiconductors 38, 393 (2004).
http://dx.doi.org/10.1134/1.1734664
605.
605.A. G. Milnes and D. L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (Academic, New York, 1972).
606.
606.A. Osinsky et al., Appl. Phys. Lett. 85, 4272 (2004).
http://dx.doi.org/10.1063/1.1815377
607.
607.Y. I. Alivov, Ü. Özgür, S. Doğan, C. Liu, Y. Moon, X. Gu, V. Avrutin, and H. Morkoç, Solid-State Electron. (to be published).
608.
608.A. Shimizu, M. Kanbara, M. Hada, and M. Kasuga, Jpn. J. Appl. Phys. 17, 1435 (1978).
609.
609.T. Minami, M. Tanigava, M. Yamanishi, and T. Kawamura, Jpn. J. Appl. Phys. 13, 1475 (1974).
610.
610.H. Ohta and H. Hosono, Mater. Lett. 7, 42 (2004).
611.
611.Y. Ohya, T. Niva, T. Ban, and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40, 297 (2001).
http://dx.doi.org/10.1143/JJAP.40.297
612.
612.S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. 93, 1624 (2003).
http://dx.doi.org/10.1063/1.1534627
613.
613.R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).
http://dx.doi.org/10.1063/1.1542677
614.
614.R. L. Hoffman, J. Appl. Phys. 95, 5813 (2004).
http://dx.doi.org/10.1063/1.1712015
615.
615.F. M. Hossain et al., J. Appl. Phys. 94, 7768 (2003).
http://dx.doi.org/10.1063/1.1628834
616.
616.P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr., Appl. Phys. Lett. 82, 1117 (2003).
http://dx.doi.org/10.1063/1.1553997
617.
617.Z. L. Wang, Mater. Today 7, 26 (2004).
http://dx.doi.org/10.1016/S1369-7021(04)00286-X
618.
618.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
http://dx.doi.org/10.1126/science.1058120
619.
619.Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/R01
620.
620.Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, Mater. Sci. Eng., R. 47, 1 (2004).
http://dx.doi.org/10.1016/j.mser.2004.09.001
621.
621.X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature (London) 409, 66 (2001).
http://dx.doi.org/10.1038/35051047
622.
622.M. H. Huang et al., Science 292, 1897 (2001).
http://dx.doi.org/10.1126/science.1060367
623.
623.X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science 303, 1348 (2004).
http://dx.doi.org/10.1126/science.1092356
624.
624.X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003).
http://dx.doi.org/10.1063/1.1587878
625.
625.V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, Appl. Phys. Lett. 83, 141 (2003).
http://dx.doi.org/10.1063/1.1589184
626.
626.S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, Appl. Phys. Lett. 84, 3241 (2004).
http://dx.doi.org/10.1063/1.1734681
627.
627.T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoto, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 81, 3651 (2001).
http://dx.doi.org/10.1063/1.1520337
628.
628.Z. Qiu, K. S. Wong, M. Wu, W. Lin, and H. Xu, Appl. Phys. Lett. 84, 2739 (2004).
http://dx.doi.org/10.1063/1.1697633
629.
629.H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, Appl. Phys. Lett. 84, 3376 (2004).
http://dx.doi.org/10.1063/1.1728298
630.
630.Q. X. Zhao, M. Willander, R. E. Morjan, Q.-H. Hu, and E. E. B. Campbell, Appl. Phys. Lett. 83, 165 (2003).
http://dx.doi.org/10.1063/1.1591069
631.
631.W. I. Park, D. H. Kim, S.-W. Jung, and G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002).
http://dx.doi.org/10.1063/1.1482800
632.
632.X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 96, 3141 (2004).
633.
633.Y. B. Li, Y. Bando, and D. Golberg, Appl. Phys. Lett. 84, 3603 (2004).
http://dx.doi.org/10.1063/1.1738174
634.
634.P. X. Gao and Z. L. Wang, Appl. Phys. Lett. 84, 2883 (2004).
http://dx.doi.org/10.1063/1.1702137
635.
635.W. D. Yu, X. M. Li, and X. D. Gao, Appl. Phys. Lett. 84, 2658 (2004).
http://dx.doi.org/10.1063/1.1695097
636.
636.A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, Appl. Phys. Lett. 84, 2635 (2004).
http://dx.doi.org/10.1063/1.1695633
637.
637.Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.185502
638.
638.B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba, and K. Haga, Appl. Phys. Lett. 84, 586 (2004).
http://dx.doi.org/10.1063/1.1642755
639.
639.M. Haupt et al., J. Appl. Phys. 93, 6252 (2003).
http://dx.doi.org/10.1063/1.1563845
640.
640.A. Ladenburger, M. Haupt, R. Sauer, K. Thonke, H. Xu, and W. A. Goedel, Physica E (Amsterdam) 17, 489 (2003).
641.
641.R. Könenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004).
http://dx.doi.org/10.1063/1.1836873
642.
642.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
http://dx.doi.org/10.1126/science.1058120
643.
643.X. D. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, J. Phys. Chem. B 108, 8773 (2004).
http://dx.doi.org/10.1021/jp048482e
644.
644.X. Y. Kong and Z. L. Wang, Nano Lett. 3, 1625 (2003).
http://dx.doi.org/10.1021/nl034463p
645.
645.Y. W. Heo et al., Appl. Phys. Lett. 85, 2002 (2004).
http://dx.doi.org/10.1063/1.1792373
646.
646.B. S. Kang, Y. W. Heo, L. C. Tien, D. P. Norton, F. Ren, B. P. Gila, and S. J. Pearton, Appl. Phys. A: Mater. Sci. Process. 80, 1029 (2005).
http://dx.doi.org/10.1007/s00339-004-3098-8
647.
647.Y. W. Heo, L. C. Tien, Y. Kwon, S. J. Pearton, B. S. Kang, F. Ren, and J. R. LaRoche, Appl. Phys. Lett. 85, 3107 (2004).
http://dx.doi.org/10.1063/1.1802372
648.
648.M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, J. Phys. Chem. B 107, 659 (2003).
http://dx.doi.org/10.1021/jp0271054
649.
649.W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, Appl. Phys. Lett. 85, 5052 (2004).
http://dx.doi.org/10.1063/1.1821648
650.
650.Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004).
http://dx.doi.org/10.1063/1.1836870
651.
651.Z. Fan, P.-C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C.-H. Lin, and H. P. Lee, Appl. Phys. Lett. 85, 6128 (2004).
http://dx.doi.org/10.1063/1.1841453
652.
652.Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, S. J. Pearton, B. S. Kang, and F. Ren, Appl. Phys. Lett. 85, 2274 (2004).
http://dx.doi.org/10.1063/1.1794351
653.
653.H. S. Bae, M. H. Yoon, J. H. Kim, and S. Im, Appl. Phys. Lett. 82, 733 (2003).
http://dx.doi.org/10.1063/1.1542677
654.
654.M. Liu and H. K. Kim, Appl. Phys. Lett. 84, 173 (2004).
http://dx.doi.org/10.1063/1.1640468
655.
655.L. Lagowski, E. S. Sproles, Jr., and H. C. Gatos, J. Appl. Phys. 48, 3566 (1977).
http://dx.doi.org/10.1063/1.324156
656.
656.J. Masum, P. Parmiter, T. J. Hall, and M. Crouch, IEE Proc.-G: Circuits, Devices Syst. 143, 307 (1996).
657.
657.Y. Z. Xiong, G.-I. Ng, H. Wang, and J. S. Fu, IEEE Trans. Electron Devices 48, 2192 (2001).
http://dx.doi.org/10.1109/16.954453
658.
658.M. H. Zhao, Z. L. Wang, and S. X. Mao, Nano Lett. 4, 587 (2004).
http://dx.doi.org/10.1021/nl035198a
659.
659.B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 84, 4098 (2004).
http://dx.doi.org/10.1063/1.1753061
660.
660.M. Catti, Y. Noel, and R. Dovesi, J. Phys. Chem. Solids 64, 2183 (2003).
661.
661.Y. Noel, C. M. Zicovich-Wilson, B. Civalleri, Ph. D’Arco, and R. Dovesi, Phys. Rev. B 65, 014111 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.014111
662.
662.G. Carlotti, D. Fioretto, G. Socino, and E. Verona, J. Phys.: Condens. Matter 7, 9147 (1995).
http://dx.doi.org/10.1088/0953-8984/7/48/006
663.
663.G. Carlotti, G. Socino, A. Petri, and E. Verona, Appl. Phys. Lett. 51, 1889 (1987).
http://dx.doi.org/10.1063/1.98502
664.
664.T. Azuhata et al., J. Appl. Phys. 94, 968 (2003).
http://dx.doi.org/10.1063/1.1586466
665.
665.I. B. Kobiakov, Solid State Commun. 35, 305 (1980).
http://dx.doi.org/10.1016/0038-1098(80)90503-7
666.
666.R. M. Martin, Phys. Rev. B 5, 1607 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.1607
667.
667.M. Koyano, P. QuocBao, L. T. ThanhBinh, L. HongHa, N. NgocLong, and S. Katayama, Phys. Status Solidi A 193, 125 (2002).
http://dx.doi.org/10.1002/1521-396X(200209)193:1<125::AID-PSSA125>3.0.CO;2-X
668.
668.E. F. Venger, A. V. Melnichuk, L. Lu. Melnichuk, and Yu. A. Pasechnik, Phys. Status Solidi B 188, 823 (1995).
669.
669.J. Nause and B. Nemeth, Semicond. Sci. Technol. 20, S45 (2005).
670.
670.K. Maeda, M. Sato, I. Niikura, and T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005).
671.
671.M. V. Cho, A. Setiawan, K. J. Ko, S. K. Hong, and T. Yao, Semicond. Sci. Technol. 20, S13 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/002
672.
672.A. Ohmoto and A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/001
http://aip.metastore.ingenta.com/content/aip/journal/jap/98/4/10.1063/1.1992666
Loading
/content/aip/journal/jap/98/4/10.1063/1.1992666
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/98/4/10.1063/1.1992666
2005-08-30
2016-05-05

Abstract

The semiconductorZnO has gained substantial interest in the research community in part because of its large exciton binding energy which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of -type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev.142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys.6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. Lett.16, 439 (1970)]. In terms of devices, Au Schottky barriers in 1965 by Mead [Phys. Lett.18, 218 (1965)], demonstration of light-emitting diodes (1967) by Drapak [Semiconductors2, 624 (1968)], in which was used as the -type material, metal-insulator-semiconductor structures (1974) by Minami et al. [Jpn. J. Appl. Phys.13, 1475 (1974)], junctions (1975) by Tsurkan et al. [Semiconductors6, 1183 (1975)], and Ohmic contacts by Brillson [J. Vac. Sci. Technol.15, 1378 (1978)] were attained. The main obstacle to the development of ZnO has been the lack of reproducible and low-resistivity -type ZnO, as recently discussed by Look and Claflin [Phys. Status Solidi B241, 624 (2004)]. While ZnO already has many industrial applications owing to its piezoelectric properties and band gap in the near ultraviolet, its applications to optoelectronic devices has not yet materialized due chiefly to the lack of -type epitaxial layers. Very high quality what used to be called whiskers and platelets, the nomenclature for which gave way to nanostructures of late, have been prepared early on and used to deduce much of the principal properties of this material, particularly in terms of optical processes. The suggestion of attainment of -type conductivity in the last few years has rekindled the long-time, albeit dormant, fervor of exploiting this material for optoelectronic applications. The attraction can simply be attributed to the large exciton binding energy of of ZnO potentially paving the way for efficient room-temperature exciton-based emitters, and sharp transitions facilitating very low threshold semiconductor lasers. The field is also fueled by theoretical predictions and perhaps experimental confirmation of ferromagnetism at room temperature for potential spintronics applications. This review gives an in-depth discussion of the mechanical, chemical, electrical, and optical properties of ZnO in addition to the technological issues such as growth, defects, -type doping, band-gap engineering, devices, and nanostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/98/4/1.1992666.html;jsessionid=IVtaCmixtjRibxbuWgZLpz8r.x-aip-live-02?itemId=/content/aip/journal/jap/98/4/10.1063/1.1992666&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd