1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The rotational spectra of single molecular eigenstates of 2-fluoroethanol: Measurement of the conformational isomerization rate at 2980 cm−1
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/110/4/10.1063/1.477865
1.
1.K. K. Lehmann, G. Scoles, and B. H. Pate, Annu. Rev. Phys. Chem. 45, 241 (1994).
2.
2.D. J. Nesbitt and R. W. Field, J. Phys. Chem. 100, 12735 (1996).
3.
3.A. M. deSouza, D. Kaur, and D. S. Perry, J. Chem. Phys. 88, 4569 (1988).
4.
4.K. F. Freed and A. Nitzan, J. Chem. Phys. 73, 4765 (1980).
5.
5.P. Brumer and M. Shapiro, Annu. Rev. Phys. Chem. 43, 257 (1992).
6.
6.A. McIlroy and D. J. Nesbitt, J. Chem. Phys. 92, 2229 (1990).
7.
7.E. Hudspeth, D. A. McWhorter, and B. H. Pate, J. Chem. Phys. 109, 4316 (1998).
8.
8.E. R. Th. Kerstel, K. K. Lehmann, T. F. Mentel, B. H. Pate, and G. Scoles, J. Phys. Chem. 95, 8282 (1991).
9.
9.G. A. Bethardy, X. Wang, and D. S. Perry, Can. J. Chem. 72, 652 (1994).
10.
10.A. McIlroy and D. J. Nesbitt, J. Chem. Phys. 101, 3421 (1994).
11.
11.E. Hudspeth, D. A. McWhorter, and B. H. Pate, J. Chem. Phys. 107, 8189 (1997).
12.
12.D. Green, R. Holmberg, C. Y. Lee, D. A. McWhorter, and B. H. Pate, J. Chem. Phys.109, 4407 (1998).
13.
13.B. H. Pate, J. Chem. Phys. 109, 4396 (1998).
14.
14.B. H. Pate, J. Chem. Phys. 110, 1990 (1999), preceding paper.
15.
15.H. Frei and G. Pimentel, Annu. Rev. Phys. Chem. 36, 491 (1985).
16.
16.M. Perttila, J. Murto, A. Kivinen, and K. Turunen, Spectrochim. Acta A 34, 9 (1978).
17.
17.J. Pourcin, G. Davidovics, H. Bodot, L. Abouaf-Marguin, and B. Gauthier-Roy, Chem. Phys. Lett. 74, 147 (1980).
18.
18.W. F. Hoffman III and J. S. Shirk, Chem. Phys. 78, 331 (1983).
19.
19.J. Pourcin, M. Monnier, P. Verlaque, G. Davidovics, R. Lauricella, C. Colonna, and H. Bodot, J. Mol. Spectrosc. 109, 186 (1985).
20.
20.M. Rasanen, J. Murto, and V. E. Bondybey, J. Phys. Chem. 89, 3967 (1985).
21.
21.W. F. Hoffman III and J. S. Shirk, J. Phys. Chem. 89, 1715 (1985).
22.
22.O. Schrems, Ber. Bunsenges. Phys. Chem. 89, 297 (1985).
23.
23.Z. H. Kafafi, C. L. Marquardt, and J. S. Shirk, J. Chem. Phys. 90, 3087 (1989).
24.
24.J. S. Shirk and C. L. Marquardt, J. Chem. Phys. 92, 7234 (1990).
25.
25.C. L. Brummel, S. W. Mork, and L. A. Philips, J. Chem. Phys. 95, 7041 (1991).
26.
26.D. Green, S. Hammond, J. Keske, and B. H. Pate, J. Chem. Phys. 110, 1979 (1999), first paper in this series.
27.
27.S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
28.
28.F. J. Wodarczyk and E. B. Wilson, J. Mol. Spectrosc. 37, 445 (1971).
29.
29.R. C. Woods, A. M. Ronn, and E. B. Wilson Jr., Rev. Sci. Instrum. 37, 927 (1966).
30.
30.O. L. Stiefvater, Z. Naturforsch. A 30, 1742 (1975).
31.
31.R. F. Curl and T. Oka, J. Mol. Spectrosc. 46, 518 (1973).
32.
32.R. F. Curl Jr. and T. Oka, J. Chem. Phys. 58, 4908 (1973).
33.
33.E. R. Th. Kerstel, K. K. Lehmann, J. E. Gambogi, X. Yang, and G. Scoles, J. Chem. Phys. 99, 8559 (1993).
34.
34.M. Takami and M. Suzuki, J. Chem. Phys. 72, 4089 (1979).
35.
35.C. Y. Lee and B. H. Pate, J. Chem. Phys. 107, 10430 (1997).
36.
36.C. C. Miller, L. A. Philips, A. M. Andrews, G. T. Fraser, B. H. Pate, and R. D. Suenram, J. Chem. Phys. 100, 831 (1994).
37.
37.A. Ainetschian, G. T. Fraser, B. H. Pate, and R. D. Suenram, Chem. Phys. 190, 231 (1995).
38.
38.T. E. Gough, R. E. Miller, and G. Scoles, Appl. Phys. Lett. 30, 338 (1977).
39.
39.G. T. Fraser and A. S. Pine, J. Chem. Phys. 91, 637 (1989).
40.
40.S. Cupp, C. Y. Lee, D. A. McWhorter, and B. H. Pate, J. Chem. Phys. 109, 4302 (1998).
41.
41.There are not enough collisions in the molecular beam expansion to relax out the higher energy conformers, producing sufficient population of these conformers for rotational studies; R. S. Ruoff, T. D. Klots, T. Emilsson, and H. S. Gutowsky, J. Chem. Phys. 93, 3142 (1990).
42.
42.D. A. McWhorter, S. B. Cupp, C. Y. Lee, and B. H. Pate, J. Mol. Spectrosc. (in press).
43.
43.The two state model is reasonable for the a-type rotational spectrum of a near-prolate asymmetric top molecule. In this case, all components of the lower J rotational level here) are split by the resonant microwave field. The -dependence of the transition moment is small for low J transitions.
44.
44.The double-resonance signal is estimated via a calculation of the decrease in infrared signal intensity as a function of the position of two dressed states with a given interaction matrix coupling element. In Fig. 4(a), the relative frequency position of 0 MHz corresponds to the resonance condition of the two dressed states (see Fig. 2) and thus reflects the position of greatest double-resonance signal modulation.
45.
45.We note that our instrumental double-resonance linewidth (6 MHz) is less than the predicted value for a 5 MHz infrared linewidth (9 MHz). The infrared linewidth results from residual Doppler broadening in the collimated molecular beam. This lower measured line width suggests that the double-resonance measurements achieve a small sub-Doppler linewidth reduction.
46.
46.A. M. Andrews, G. T. Fraser, and B. H. Pate, J. Chem. Phys. 109, 4290 (1998).
47.
47.J. R. Durig, P. Klaeboe, G. A. Guirgis, L. Wang, and J. Liu, Z. Phys. Chem. I 191, 23 (1995).
48.
48.This view of the dynamics is similar to the picture used to discuss the vibrational dynamics of weakly bound molecular complexes; G. T. Fraser, J. Chem. Phys. 90, 2097 (1989).
49.
49.The vibrational spectroscopy of molecules with torsional motions is similar to the spectroscopy of weakly bound molecular complexes. However, for single molecules, direct transitions to higher torsional states in the vibrational excited state are typically not observed. In contrast, direct excitation of high-frequency/low-frequency combination bands has been observed for weakly bound complexes, although only with very high sensitivity methods; C. M. Lovejoy and D. J. Nesbitt, Chem. Phys. Lett. 146, 582 (1988).
50.
50.K. S. Buckton and R. G. Azrak, J. Chem. Phys. 52, 5652 (1970).
51.
51.GAUSSIAN 94 (Revision D.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Ragavachari, M. A. Al-Laham, V. G. Kakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales, and J. A. Pople, Gaussian, Inc., Pittsburgh, Pennsylvania, 1995.
52.
52.J. K. G. Watson, Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1978), Vol. 6, pp. 1–89.
53.
53.The rotational spectrum was fit using the program developed by A. G. Maki at the NIST (private communication).
54.
54.R. Meyer and E. B. Wilson Jr., J. Chem. Phys. 53, 3969 (1970).
55.
55.J. D. Lewis, T. B. Malloy, T. H. Chao, and J. Laane, J. Mol. Struct. 12, 427 (1972).
56.
56.This estimate must be viewed as coarse. In the spectrum simulations performed in Ref. 14, this type of complementarity in the spectrum was observed only when the interaction matrix element was either 0.0005 cm−1 or 0.001 cm−1 (by 0.002 cm−1 the rotational spectra were evenly distributed between the two conformers). The mean level spacing in the simulated spectra was 0.005 cm−1. This provides the justification for the estimate in this spectrum.
57.
57.This state density estimate reflects the state density calculated from the rotational spectrum of a single molecular eigenstate at This value therefore reflects the state density of a single parity component at and agrees well with the reported state density of the infrared study (Ref. 26) which predicts half (because of parity considerations) of (at .
58.
58.C. Cohen-Tanoudji, B. Diu, and F. Laloe, Quantum Mechanics (Wiley, New York, 1977), Vol. 2, pp. 1299–1301.
59.
59.H. Günther, NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry (Wiley, New York, 1995), Appendix 9, pp. 529–531.
60.
60.Details of the spectral simulations can be found in D. A. McWhorter, Ph.D. thesis, University of Virginia, August 1998.
61.
61.P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley–Interscience, New York, 1972), Chap. 4.
62.
62.D. M. Leitner and P. G. Wolynes, Chem. Phys. Lett. 280, 411 (1997).
63.
63.S. H. Northrup and J. T. Hynes, J. Chem. Phys. 73, 2700 (1980).
64.
64.S. Nordholm, Chem. Phys. 137, 109 (1989).
65.
65.T. Baer and W. L. Hase, Unimolecular Reaction Dynamics (Oxford University Press, New York, 1996), Chap. 10.
66.
66.B. H. Pate, K. K. Lehmann, and G. Scoles, J. Chem. Phys. 95, 3891 (1991).
67.
67.C. Douketis and J. P. Reilly, J. Chem. Phys. 91, 5239 (1989).
68.
68.J. Go, T. J. Cronin and D. S. Perry, Chem. Phys. 175, 127 (1993).
69.
69.J. Kommandeur, W. A. Majewski, W. L. Meerts, and D. W. Pratt, Annu. Rev. Phys. Chem. 38, 443 (1987).
70.
70.J. K. Lundberg, R. W. Field, C. D. Sherrill, E. T. Seidl, Y. Xie, and H. F. Schaefer III, J. Chem. Phys. 98, 8384 (1993).
71.
71.M. A. Suhm, J. T. Farrel Jr., S. H. Ashworth, and D. J. Nesbitt, J. Chem. Phys. 98, 5985 (1993).
72.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/110/4/10.1063/1.477865
Loading
Loading

Article metrics loading...

/content/aip/journal/jcp/110/4/10.1063/1.477865
1999-01-22
2014-04-18
Loading

Full text loading...

true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The rotational spectra of single molecular eigenstates of 2-fluoroethanol: Measurement of the conformational isomerization rate at 2980 cm−1
http://aip.metastore.ingenta.com/content/aip/journal/jcp/110/4/10.1063/1.477865
10.1063/1.477865
SEARCH_EXPAND_ITEM