1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Intramolecular vibrational energy redistribution and conformational isomerization in vibrationally excited 2-fluoroethanol: High-resolution, microwave-infrared double-resonance spectroscopy investigation of the asymmetric stretch near 2980 cm−1
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/110/4/10.1063/1.477975
1.
1.P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley–Interscience, New York, 1972).
2.
2.T. Baer and W. L. Hase, Unimolecular Reaction Dynamics, Theory and Experiment (Oxford University Press, New York, 1996).
3.
3.J. Kommandeur, W. A. Majewski, W. L. Meerts, and D. W. Pratt, Annu. Rev. Phys. Chem. 38, 443 (1987).
4.
4.K. K. Lehmann, G. Scoles, and B. H. Pate, Annu. Rev. Phys. Chem. 37, 493 (1986).
5.
5.D. J. Nesbitt and R. W. Field, J. Phys. Chem. 100, 12735 (1996).
6.
6.P. M. Felker and A. H. Zewail, J. Chem. Phys. 82, 2975 (1985).
7.
7.A. M. DeSouza, D. Kaur, and D. S. Perry, J. Chem. Phys. 88, 4569 (1988).
8.
8.A. McIlroy and D. J. Nesbitt, J. Chem. Phys. 92, 2229 (1990).
9.
9.B. H. Pate, K. K. Lehmann, and G. Scoles, J. Chem. Phys. 95, 3891 (1991).
10.
10.G. T. Fraser, B. H. Pate, G. A. Bethardy, and D. S. Perry, J. Chem. Phys. 175, 223 (1993).
11.
11.E. Hudspeth, D. A. McWhorter, and B. H. Pate, J. Chem. Phys. 109, 4316 (1998).
12.
12.G. M. Stewart and J. D. McDonald, J. Chem. Phys. 78, 3907 (1983).
13.
13.J. Go, T. J. Cronin, and D. S. Perry, Chem. Phys. 175, 127 (1993).
14.
14.J. E. Gambogi, E. R. T. Kerstel, K. K. Lehmann, and G. Scoles, J. Chem. Phys. 100, 2612 (1994).
15.
15.A. M. Andrews, G. T. Fraser, and B. H. Pate, J. Chem. Phys. 109, 4290 (1998).
16.
16.C. Y. Lee and B. H. Pate, J. Chem. Phys. 107, 10430 (1997).
17.
17.D. A. McWhorter and B. H. Pate, J. Mol. Spectrosc. (in press).
18.
18.G. A. Bethardy and D. S. Perry, J. Chem. Phys. 99, 9400 (1993).
19.
19.D. S. Perry, G. A. Bethardy, and X. Wang, Ber. Bunsenges. Phys. Chem. 99, 530 (1995).
20.
20.D. M. Leitner and P. G. Wolynes, Chem. Phys. Lett. 280, 411 (1997).
21.
21.T. Uzer and W. H. Miller, Phys. Rep. 199, 73 (1991).
22.
22.R. E. Miller, Acc. Chem. Res. 23, 10 (1990).
23.
23.T. Carrington , Jr., L. M. Hubbard, H. F. Schaefer III, and W. H. Miller, J. Chem. Phys. 80, 4347 (1984).
24.
24.K. Yamanouchi, N. Ikeda, S. Tsuchiya, D. M. Jonas, J. K. Lundberg, G. W. Adamson, and R. W. Field, J. Chem. Phys. 95, 6330 (1991).
25.
25.M. J. Davis, J. Chem. Phys. 98, 2614 (1993).
26.
26.D. M. Leitner and L. S. Cederbaum, Phys. Rev. E 48, 2536 (1993).
27.
27.D. M. Leitner and L. S. Cederbaum, Phys. Rev. Lett. 73, 2970 (1994).
28.
28.B. H. Pate, J. Chem. Phys. 110, 1990 (1999), following paper.
29.
29.D. A. McWhorter, E. Hudspeth, and B. H. Pate, J. Chem. Phys. 110, 2000 (1999), third paper in this series.
30.
30.K. S. Buckton and R. G. Azrak, J. Chem. Phys. 52, 5652 (1970).
31.
31.J. Murto, M. Rasanen, A. Aspiala, and L. Homanen, J. Mol. Struct.: THEOCHEM 92, 45 (1983).
32.
32.K. B. Wiberg and M. A. Murcko, J. Mol. Struct.: THEOCHEM 163, 1 (1988).
33.
33.J. R. Durig, P. Klaeboe, G. A. Guirgis, L. Wang, and J. Liu, Z. Phys. Chem. (Munich) 191, 23 (1995).
34.
34.M. Rasanen, J. Murto, and V. E. Bondybey, J. Phys. Chem. 89, 3967 (1985).
35.
35.J. Pourcin, M. Monnier, P. Verlaque, G. Davidovics, R. Lauricella, C. Colonna, and H. Bodot, J. Mol. Spectrosc. 109, 186 (1985).
36.
36.Z. H. Kafafi, C. L. Marquardt, and J. S. Shirk, J. Chem. Phys. 90, 3087 (1989).
37.
37.C. L. Brummel, S. W. Mork, and L. A. Philips, J. Chem. Phys. 95, 7041 (1991).
38.
38.C. L. Brummel, S. W. Mork, and L. A. Philips, J. Am. Chem. Soc. 113, 4342 (1991).
39.
39.C. C. Miller, L. A. Philips, A. M. Andrews, G. T. Fraser, B. H. Pate, and R. D. Suenram, J. Chem. Phys. 100, 831 (1994).
40.
40.E. Hudspeth, D. A. McWhorter, and B. H. Pate, J. Chem. Phys. 107, 8189 (1997).
41.
41.G. T. Fraser and A. S. Pine, J. Chem. Phys. 91, 637 (1989).
42.
42.S. Cupp, C. Y. Lee, D. McWhorter, and B. H. Pate, J. Chem. Phys. 109, 4302 (1998).
43.
43.T. E. Gouch, R. E. Miller, and G. Scoles, Appl. Phys. Lett. 30, 338 (1977).
44.
44.The actual FSR near 2983 cm−1 is calibrated using precisely known ground state combination differences in the infrared spectrum.
45.
45.C. Y. Lee and B. H. Pate, Chem. Phys. Lett. 284, 369 (1998).
46.
46.R. Meyer and M. Pertilla, J. Mol. Struct. 64, 1 (1980).
47.
47.J. D. Lewis, T. B. Mallory, T. H. Chao, and J. Laane, J. Mol. Struct. 12, 1978 (1972).
48.
48.T. J. Balle and W. H. Flygare, Rev. Sci. Instrum. 52, 33 (1981).
49.
49.The rotational spectrum was fit using the program developed by A. G. Maki at the NIST (private communication).
50.
50.J. K. G. Watson, Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1978).
51.
51.See AIP Document No. for a listing of observed infrared and microwave transitions. E-PAPS document files may be retrieved free of charge from our FTP server (http://www.aip.org/epaps/epaps.html) or from ftp.aip.org in the directory /epaps/. For further information, e-mail: paps@aip.org or fax: 516-576-2223.[Supplementary Material]
52.
52.X. Jiang and P. Brumer, J. Chem. Phys. 94, 5833 (1991).
53.
53.Because we observe no obvious separation between the IVR multiplets from the two bright states, we expect that the lifetimes are at most a factor of 2 too short.
54.
54.J. M. Bowman and B. Gazdy, J. Phys. Chem. A 101, 6384 (1997).
55.
55.Technically, we are assigning the torsional states only as G (gauche) or T (trans) (i.e., only the behavior with respect to the C–C torsion). It is not known whether the structures other than the and Tt are stable. Spectroscopic evidence exists only for a stable and Tt structure so we have used these labels for the torsional states.
56.
56.GAUSSIAN 94 calculations in the basis set. GAUSSIAN 94 (Revision D.1), M. J. Frisch, G. W. Trucks, B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Ragavachari, M. A. Al-Laham, V. G. Kakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chem, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales, and J. A. Pople, Gaussian, Inc., Pittsburgh, Pennsylvania, 1995.
57.
57.K. S. Pitzer, J. Chem. Phys. 14, 239 (1946).
58.
58.The details of this calculation can be found in David A McWhorter, Ph.D. Thesis, University of Virginia, August 1998.
59.
59.Direct state counts are performed using the algorithm reported in M. J. H. Kemper, J. M. F. van Dijk, and H. M. Buck, Chem. Phys. Lett. 53, 121 (1978).
60.
60.This method for calculating the states density is equivalent to the formula where N is the number of components in the IVR multiplet and is the energy separation between the first and last eigenstates in the IVR multiplet.
61.
61.The methodology for determining center density is reported in D. A. McWhorter and B. H. Pate, J. Mol. Spectrosc. (in press).
62.
62.The asymmetry splitting between the and rotational levels of the ground state is 81 MHz.
63.
63.There is also the possibility of the b-type transition dipole moment (i.e., and interfering in the infrared spectrum. However, the b-type transition dipole moment is approximately ten times weaker than the c-type transition dipole moment.
64.
64.D. S. Perry, J. Chem. Phys. 98, 6665 (1993).
65.
65.Our model Hamiltonian consists of one matrix for each parity component. The density of states is 50 states/cm−1, for each parity. The density of the nondegenerate Tt/delocalized states is also 50 states/cm−1 for each parity. Therefore, the total state density for the model spectrum is 200 states/cm−1. The coupling matrix element distribution between and the Tt/delocalized states is Gaussian with a mean of zero and a standard deviation of 0.01 cm−1. The cross-coupling terms are chosen from a Gaussian distribution with a mean of zero and a variable standard deviation. The infrared spectrum is calculated by selecting a single state as the bright state. A signal to noise cutoff of 200:1 is used to filter the calculated spectrum, better simulating an experimental spectrum. The normalized level spacing distribution for a set of 30 different samples of the Hamiltonian is compared to the experimental distribution.
66.
66.T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).
67.
67.C. Cohen-Tanoudji, B. Diu, and F. Laloe, Quantum Mechanics (Wiley, New York, 1977), Vol. 2, pp. 1299–1301.
68.
68.S. Nordholm, Chem. Phys. 137, 109 (1989).
69.
69.D. B. Borchardt and S. H. Bauer, J. Chem. Phys. 85, 4980 (1986).
70.
70.S. H. Northrup and J. T. Hynes, J. Chem. Phys. 73, 2700 (1980).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/110/4/10.1063/1.477975
Loading
Loading

Article metrics loading...

/content/aip/journal/jcp/110/4/10.1063/1.477975
1999-01-22
2014-04-16
Loading

Full text loading...

true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Intramolecular vibrational energy redistribution and conformational isomerization in vibrationally excited 2-fluoroethanol: High-resolution, microwave-infrared double-resonance spectroscopy investigation of the asymmetric –CH2(F) stretch near 2980 cm−1
http://aip.metastore.ingenta.com/content/aip/journal/jcp/110/4/10.1063/1.477975
10.1063/1.477975
SEARCH_EXPAND_ITEM