1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Collision-induced conformational changes in glycine
Rent:
Rent this article for
USD
10.1063/1.1927527
/content/aip/journal/jcp/122/24/10.1063/1.1927527
http://aip.metastore.ingenta.com/content/aip/journal/jcp/122/24/10.1063/1.1927527

Figures

Image of FIG. 1.
FIG. 1.

The conformers of glycine. (a) Conformer populations at determined from neon-matrix infrared spectroscopy (see Ref. 22). (b) Conformer IV not observed experimentally.

Image of FIG. 2.
FIG. 2.

Schematic illustration of conformer interconversion. The upper panel shows a typical experimental setup in which molecules are heated in an oven prior to free-jet expansion and spectroscopic analysis. The lower panel shows the corresponding distribution of conformers. During expansion, the distribution will either experience vertical collapse, preserving the population of high-energy conformers, or it will experience conformer interconversion and exhibit “missing” conformers.

Image of FIG. 3.
FIG. 3.

Arrows indicate the two interconversion processes considered in this study. The torsional angles correspond to intramolecular rotation about the C–C bond, C–O single bond, and C–N bond, respectively. Energies determined by single-point calculations at -optimized geometries.

Image of FIG. 4.
FIG. 4.

Potential surfaces and vibrational eigenfunctions for the C–C torsion (left panel) and the C–N torsion (right panel). Eigenfunctions plotted in red ( and in the left panel and in the right panel) have nonzero amplitude corresponding to both conformers.

Image of FIG. 5.
FIG. 5.

Angle-averaged total interconversion probabilities calculated for the (a) and (b) processes as a function of collision energy. Results shown for collisions involving the He, Ne, and Ar rare-gas atoms. The vertical line indicates the energy of the torsional barrier to interconversion.

Image of FIG. 6.
FIG. 6.

Angle-averaged direct interconversion probabilities calculated for the (a) and (b) processes as a function of collision energy. Results shown for collisions involving the He, Ne, and Ar rare-gas atoms. The vertical line indicates the energy of the torsional barrier to interconversion.

Image of FIG. 7.
FIG. 7.

Angle-dependent total interconversion probabilities for Ne-glycine collisions at energy (a) and (b) . Results for the process are in the left column; results for the process are in the right column. The molecular diagrams illustrate collision angles corresponding to large interconversion probability. Part (c) presents the calculated collision times for the two interconversion processes.

Image of FIG. 8.
FIG. 8.

Angle-averaged total interconversion probabilities calculated for the process as a function of energy. In (a), the colliding atom mass is set to that of He for all three interaction potentials. In (b), the colliding atom mass is set to that of Ne for all three interaction potentials. The agreement between the two plots indicates that the interconversion probability is more sensitive to the interaction potential than the mass of the colliding atom.

Image of FIG. 9.
FIG. 9.

The sum of the C–C torsional potential and the glycine-Ar interaction potential at various fixed values of the collision distance . The barrier to conformer interconversion lowers as the Ar atom approaches. The collision angle used in this figure is .

Image of FIG. 10.
FIG. 10.

[(a) and (b)] The barrier to interconversion as a function of the collision distance . (c) The barrier to interconversion as a function of the collision distance . The collision angle used for each plot is specified. The Ne and Ar colliding atoms give rise to a substantial barrier-lowering effect; the He colliding atom does not.

Image of FIG. 11.
FIG. 11.

Infrared-absorption spectra calculated for the distribution of glycine conformers at without interconversion of conformer IV (top) and with interconversion of conformer IV (middle). The bottom curve shows the difference between these two spectra. The conformer IV symmetric stretch at is well separated from other absorptions.

Tables

Generic image for table
Table I.

Comparison of the experimentala and calculatedb conformer populations (%) of glycinec.

Generic image for table
Table II.

Fitting parameter for the 1D torsional potentials in Eq. (8).

Generic image for table
Table III.

Parameters used for Ne-glycine and Ar-glycine interaction potentials [Eq. (15)].

Generic image for table
Table IV.

Various parameters for the wave-packet calculations. All values are in a.u. Value is the value for the calculations involving rare-gas atom .

Loading

Article metrics loading...

/content/aip/journal/jcp/122/24/10.1063/1.1927527
2005-07-06
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Collision-induced conformational changes in glycine
http://aip.metastore.ingenta.com/content/aip/journal/jcp/122/24/10.1063/1.1927527
10.1063/1.1927527
SEARCH_EXPAND_ITEM