1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Three-dimensional-IR spectroscopy: Beyond the two-point frequency fluctuation correlation function
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/124/12/10.1063/1.2178811
1.
1.S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).
2.
2.M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 17311 (1995).
http://dx.doi.org/10.1021/j100048a004
3.
3.G. R. Fleming and M. Cho, Annu. Rev. Phys. Chem. 47, 109 (1996).
http://dx.doi.org/10.1146/annurev.physchem.47.1.109
4.
4.M. Cho, J. Y. Yu, T. Joo, Y. Nagasawa, S. A. Passino, and G. R. Fleming, J. Phys. Chem. 100, 11944 (1996).
http://dx.doi.org/10.1021/jp9601983
5.
5.T. Joo, Y. Jia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, J. Phys. Chem. 104, 6089 (1996).
6.
6.W. de Boeij, M. Pshenichnikov, and D. Wiersma, Chem. Phys. Lett. 253, 53 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00207-2
7.
7.P. Hamm, M. Lim, and R. M. Hochstrasser, Phys. Rev. Lett. 81, 5326 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5326
8.
8.J. Stenger, D. Madsen, P. Hamm, E. T. J. Nibbering, and T. Elsaesser, Phys. Rev. Lett. 87, 027401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.027401
9.
9.M. F. Emde, A. Baltuška, A. Kummrow, M. S. Pshenichnikov, and D. A. Wiersma, Phys. Rev. Lett. 80, 4645 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4645
10.
10.C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, Science 301, 1698 (2003).
http://dx.doi.org/10.1126/science.1087251
11.
11.P. Hamm, M. Lim, and R. M. Hochstrasser, J. Phys. Chem. B 102, 6123 (1998).
http://dx.doi.org/10.1021/jp9813286
12.
12.J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01140-3
13.
13.S. M. Gallagher Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489 (1999).
http://dx.doi.org/10.1021/jp9925738
14.
14.J. D. Hybl, Y. Christophe, and D. M. Jonas, Chem. Phys. 266, 295 (2001).
http://dx.doi.org/10.1016/S0301-0104(01)00233-6
15.
15.K. A. Merchant, D. E. Thompson, and M. D. Fayer, Phys. Rev. Lett. 86, 3899 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3899
16.
16.M. T. Zanni, M. C. Asplund, and R. M. Hochstrasser, J. Chem. Phys. 114, 4579 (2001).
http://dx.doi.org/10.1063/1.1346647
17.
17.S. Woutersen, R. Pfister, P. Hamm, Y. Mu, D. S. Kosov, and G. Stock, J. Chem. Phys. 117, 6833 (2002).
http://dx.doi.org/10.1063/1.1506151
18.
18.S. Yeremenko, M. S. Pschenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 369, 107 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)02001-8
19.
19.T. Steinel, J. B. Asbury, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. D. Fayer, Chem. Phys. Lett. 386, 295 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.042
20.
20.J. B. Asbury, T. Steinel, K. Kwak, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. Fayer, J. Chem. Phys. 121, 12431 (2004).
http://dx.doi.org/10.1063/1.1818107
21.
21.J. B. Asbury, T. Steinel, C. Stromberg, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. Fayer, J. Phys. Chem. A 108, 1107 (2004).
http://dx.doi.org/10.1021/jp036266k
22.
22.M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Nature (London) 434, 199 (2005).
http://dx.doi.org/10.1038/nature03383
23.
23.C. Scheurer and S. Mukamel, J. Chem. Phys. 115, 4989 (2001).
http://dx.doi.org/10.1063/1.1391266
24.
24.Y. Tanimura and S. Mukamel, J. Chem. Phys. 99, 9496 (1993).
http://dx.doi.org/10.1063/1.465484
25.
25.M. Cho, J. Chem. Phys. 115, 4424 (2001).
http://dx.doi.org/10.1063/1.1389844
26.
26.K. J. Kubarych, C. J. Milne, and R. J. D. Miller, Int. Rev. Phys. Chem. 22, 497 (2003).
http://dx.doi.org/10.1080/0144235031000121544
27.
27.C. J. Fecko, J. Loparo, S. T. Roberts, and A. Tokmakoff, J. Chem. Phys. 122, 054506 (2004).
http://dx.doi.org/10.1063/1.1839179
28.
28.J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
29.
29.S. A. Corcelli and J. L. Skinner, J. Phys. Chem. A 109, 6154 (2005).
http://dx.doi.org/10.1021/jp0506540
30.
30.K. Kwac, H. Lee, and M. Cho, J. Chem. Phys. 120, 1477 (2004).
http://dx.doi.org/10.1063/1.1633549
31.
31.S. Woutersen and P. Hamm, Chem. Phys. 266, 137 (2001).
http://dx.doi.org/10.1016/S0301-0104(01)00224-5
32.
32.K. Kwac and M. Cho, J. Chem. Phys. 119, 2256 (2003).
http://dx.doi.org/10.1063/1.1580808
33.
33.J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
http://dx.doi.org/10.1126/science.1116213
34.
34.Y. S. Kim and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 102, 11185 (2005).
35.
35.R. Rey and J. T. Hynes, J. Chem. Phys. 108, 142 (1998).
http://dx.doi.org/10.1063/1.475389
36.
36.K. Kwac and M. Cho, J. Chem. Phys. 119, 2247 (2003).
http://dx.doi.org/10.1063/1.1580807
37.
37.C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 117, 8847 (2002).
http://dx.doi.org/10.1063/1.1514652
38.
38.K. B. Moller, R. Rey, and J. T. Hynes, J. Phys. Chem. A 108, 1275 (2004).
http://dx.doi.org/10.1021/jp035935r
39.
39.M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12247 (2004).
http://dx.doi.org/10.1063/1.1822915
40.
40.S. A. Corcelli, C. P. Lawrence, J. B. Asbury, T. Steinel, M. D. Fayer, and J. L. Skinner, J. Chem. Phys. 121, 8897 (2004).
http://dx.doi.org/10.1063/1.1803532
41.
41.J. R. Schmidt, S. A. Corcelli, and J. L. Skinner, J. Chem. Phys. 121, 8887 (2004).
http://dx.doi.org/10.1063/1.1791632
42.
42.J. Bredenbeck, J. Helbing, and P. Hamm, Phys. Rev. Lett. 95, 083201 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.083201
43.
43.J. B. Asbury, Y. Q. Wang, and T. Q. Lian, Bull. Chem. Soc. Jpn. 75, 973 (2002).
http://dx.doi.org/10.1246/bcsj.75.973
44.
44.D. F. Underwood and D. A. Blank, J. Phys. Chem. A 109, 3295 (2005).
http://dx.doi.org/10.1021/jp044187i
45.
45.S. J. Schmidtke, D. F. Underwood, and D. A. Blank, J. Phys. Chem. A 109, 7033 (2005).
46.
46.For didactic reasons, a separate local oscillator has been included in the 1D case. In a realistic experiment, the local oscillator will almost necessarily be the same as the one incident pulse due to phase matching conditions.
47.
47.R. Kubo, Adv. Chem. Phys. 15, 101 (1969).
48.
48.J. R. Schmid, S. A. Corcelli, and J. L. Skinner, J. Chem. Phys. 123, 044513 (2005).
http://dx.doi.org/10.1063/1.1961472
49.
49.M. Khalil, N. Demirdven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.047401
50.
50.Y. S. Kim and R. M. Hochstrasser, J. Phys. Chem. B 109, 6884 (2005).
http://dx.doi.org/10.1021/jp0449511
51.
51.For example, Asbury et al. (Ref. 20) used the antidiagonal linewidth of a 2D spectrum as a measure of the two-point FFCF, which is essentially equivalent to the covariance, since the diagonal linewidth does not vary much as a function of time .
52.
52.N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).
53.
53.R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford, 1987).
54.
54.The Langevin equation Eq. (22) has been integrated using time steps. The response functions were then calculated on a 1D, 3D, or 5D grid with step size with points, and were Fourier-transformed using a 1D, 2D, and 3D FFT algorithm (Ref. 62). Zero padding was used in the Fourier transform to smooth the spectra.
55.
55.T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Nature (London) 434, 625 (2005).
http://dx.doi.org/10.1038/nature03429
56.
56.However, it should be noted that another approximation made in this paper, i.e., Kubo’s stochastic theory of line shapes (Ref. 47), is likely to break down in these cases (Ref. 37). The effect of complex-valued line shape functions, when the energy gap in Eq. (31) is interpreted as quantum mechanical operator (Ref. 1) will be investigated in future work.
57.
57.A. Piryatinski and J. L. Skinner, J. Phys. Chem. B 106, 8055 (2002).
http://dx.doi.org/10.1021/jp0202542
58.
58.M. A. B. MA, K. D. Rector, and M. D. Fayer, J. Chem. Phys. 113, 3233 (2000).
http://dx.doi.org/10.1063/1.1287172
59.
59.E. C. Fulmer, F. Ding, and M. T. Zanni, J. Chem. Phys. 122, 034302 (2005).
http://dx.doi.org/10.1063/1.1810513
60.
60.H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2003).
61.
61.P. Hamm and R. M. Hochstrasser, in Ultrafast Infrared and Raman Spectroscopy, edited by M. D. Fayer (Marcel Dekker, New York, 2001), pp. 273347.
62.
62.W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/124/12/10.1063/1.2178811
Loading
/content/aip/journal/jcp/124/12/10.1063/1.2178811
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/124/12/10.1063/1.2178811
2006-03-24
2015-01-31

Abstract

Three-dimensional-IR spectroscopy is proposed as a new spectroscopic technique that is sensitive to three-point frequency fluctuation correlation functions. This will be important when the statistics of the underlying stochastic process is non-Gaussian, and hence when the system does not follow the linear response hypothesis. Furthermore, a very general classification of nonlinear spectroscopy in terms of higher order frequency fluctuation correlation functions is introduced, according to which certain moments of a multidimensional spectrum are related to certain frequency fluctuation correlation functions. The classification is rigorous in the so-called inhomogenous limit, but remains valid approximately also when motional narrowing becomes important. The work also puts a recent paper [J. Bredenbeck et al., Phys. Rev. Lett.95, 083201 (2005)] onto solid theoretical grounds, where we have shown for the first time that fifth-order spectroscopy—in this case transient two-dimensional spectroscopy—is indeed sensitive to the three-point frequency fluctuation correlation function.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/124/12/1.2178811.html;jsessionid=8e4bie4o6qaq8.x-aip-live-06?itemId=/content/aip/journal/jcp/124/12/10.1063/1.2178811&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Three-dimensional-IR spectroscopy: Beyond the two-point frequency fluctuation correlation function
http://aip.metastore.ingenta.com/content/aip/journal/jcp/124/12/10.1063/1.2178811
10.1063/1.2178811
SEARCH_EXPAND_ITEM