banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Three-dimensional-IR spectroscopy: Beyond the two-point frequency fluctuation correlation function
Rent this article for


Image of FIG. 1.
FIG. 1.

Pulse sequences and possible Feynman diagrams in (a) a first-order, (b) a third-order, and (c) a fifth-order experiment of a two-level system. one, three, or five pulses hit the sample, and the emitted first-order , third-order , and fifth-order polarizations- is phase sensitively detected by heterodyning it with a local oscillator (LO). We restrict ourselves to Feynman pathways which are in a population states during time periods and (c). Only diagrams that are in the ground state ∣0⟩⟨0∣ during these times are exemplified here. For each diagram, additional diagrams exist which go through ∣1⟩⟨1∣ states, but which lead to the same response functions as long as Kubo’s stochastic theory of line shapes (Ref. 47) is assumed.

Image of FIG. 2.
FIG. 2.

(a) Contour plots of the potentials of mean force in units of of model 1 (left column), model 2 (middle), and model 3 (right column). Short Langevin trajectories are exemplified. The resulting two-point FFCF’s and three-point FFCF’s are shown in (b) and (c). Note that is plotted here, while we had used in Ref. 42. (d) shows an example of a three-time point, fourth-order FFCF .

Image of FIG. 3.
FIG. 3.

1D (a), 2D (b), and 3D (c) spectra for model 1 (left column), model 2 (middle column), and model 3 (right column). The contour lines in (b) are on a linear scale between zero and the peak maximum, while 20% contour surfaces are shown in (c). The faces in (c) show the contour plots of projections of the 3D spectra onto the corresponding planes, thereby regaining 2D spectra [Eq. (19)]. 2D and 3D spectra are for and and , respectively.

Image of FIG. 4.
FIG. 4.

The covariance (a) and generalized skewness (b) of the 2D and 3D spectra of model 1 (left column), model 2 (middle column), and model 3 (right column) as a function of times and . (d) shows an example of a higher moment [see Eq. (18)]. Although the inhomogeneous limit is not strictly valid, covariance , generalized skewness , and nicely resemble the corresponding FFCF’s [Figs. 2(b)–2(d)].

Image of FIG. 5.
FIG. 5.

Multilevel diagrams for third-order and fifth-order spectroscopies, exemplified for and . The number above the diagram indicates the multiplicity of the corresponding diagram, considering the number of possibilities to reach a particular coherence states (i.e., the number of possibilities to go through ∣0⟩⟨0∣, ∣1⟩⟨1∣, etc., population states and still reach the same coherence states, see, e.g., the two first diagrams in (a) which are embraced since they yield the same response function), as well as the corresponding transition dipoles. Harmonic values have been used for the transition dipoles: and . The other diagrams of Fig. 1 lead to the same frequencies during the coherence times (with different signs) and the same multiplicities.


Generic image for table
Table I.

Parameters used for models (1)–(3).


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Three-dimensional-IR spectroscopy: Beyond the two-point frequency fluctuation correlation function