1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Theory and applications of supercycled symmetry-based recoupling sequences in solid-state nuclear magnetic resonance
Rent:
Rent this article for
USD
10.1063/1.2205857
/content/aip/journal/jcp/124/23/10.1063/1.2205857
http://aip.metastore.ingenta.com/content/aip/journal/jcp/124/23/10.1063/1.2205857

Figures

Image of FIG. 1.
FIG. 1.

Construction of the SR26 supercycle. (a) The inversion element is a composite pulse of the form . (b) Two elements are derived from by (i) imposing an overall phase shift of , leading to , or (ii) changing the sign of all phases, followed by an overall phase shift of , leading to . In the case of SR26, the symmetry numbers are and , and . (c) The cycle is constructed by concatenating 13 pairs. The total sequence duration is equal to four rotor periods. (d) The SR26 supercycle is constructed by concatenating with the cycle (derived by changing the sign of all phases), the cycle (derived from by an overall phase shift), and the cycle (derived from by an overall phase shift as well as a change in sign of all phases). The SR26 supercycle has a duration of 16 rotor periods.

Image of FIG. 2.
FIG. 2.

Theoretical double-quantum filtering trajectories for SR26 recoupling. (a) Theoretical trajectories for the symmetric procedure, as given in Eq. (54), for a selection of distances. (b) Theoretical trajectories for the constant time procedure, as given in Eq. (57), for the case . Each curve is normalized against its value for .

Image of FIG. 3.
FIG. 3.

Projections of the effective Hamiltonian onto two different two-dimensional subspaces, for four different pulse sequences. The numerically evaluated effective Hamiltonian for each molecular orientation is represented by a point. Repetition of the calculation for many molecular orientations generates a cloud. Left column: projections onto real and imaginary double-quantum operators [Eq. (62)]. Right column: projections onto angular momentum operators along the and axes [Eq. (63)]. [(a) and (b)] A single sequence. [(c) and (d)] A supercycle. [(e) and (f)] A supercycle. [(g) and (h)] A supercycle. All simulations were performed using the spin system parameters in Table I, at an external magnetic field of , a spinning frequency of , and a rf nutation frequency of .

Image of FIG. 4.
FIG. 4.

Numerical simulations of symmetric double-quantum filtering trajectory functions as defined in Eq. (51). Unless stated, all simulations use the parameters in Table I, with a magnetic field of , a spinning frequency of , and a rf nutation frequency of . (a) Trajectories without supercycling: (i) ideal trajectory for repetitions of the sequence, omitting all chemical shift terms; (ii) calculated trajectory for but including all parameters in Table I, (iii), as in (ii), but adjusting the rf phases by , as defined in Eq. (A10). (b) Trajectories for supercycles: (iv) calculated trajectory for the supercycle; (v) calculated trajectory for the supercycle; (vi) calculated trajectory for the supercycle; and (vii) result of the analytical formula in Eq. (54).

Image of FIG. 5.
FIG. 5.

Simulated double-quantum filtering efficiency as a function of the phase adjustment parameter [see Eq. (A10)]. Dashed line: simulations of for the sequence, at the point of maximum double-quantum-filtered signal . Solid line: simulations of for the supercycle, at the point of maximum double-quantum-filtered signal . All simulations were performed using the spin system parameters in Table I, at an external magnetic field of , a spinning frequency of , and a rf nutation frequency of .

Image of FIG. 6.
FIG. 6.

Molecular systems used in the experimental demonstrations. Gray circles indicate labels. (a) -all--retinal, (b) diammonium -fumarate, and (c) -glycine.

Image of FIG. 7.
FIG. 7.

Pulse sequences for the application of SR26 to the spectroscopy of organic solids. (a) Pulse sequence for the double-quantum filtering of cross-polarized NMR signals. The shaded elements are given a four-step phase cycle to select signals passing through -quantum coherence. The thin rectangles represent pulses. (b) Pulse sequence for the determination of relative CSA tensor orientations. A single rotor period of double-quantum evolution is inserted, interrupted by two strong pulses, and separated by an interval (white rectangles). A series of experiments is performed in which is increased, moving the pulses from the center of the rotational period to the ends of the rotational period .

Image of FIG. 8.
FIG. 8.

Double-quantum-filtered signal amplitudes for -all--retinal using the SR26 supercycle. The excitation interval was incremented in steps of a half-supercycle, while the reconversion interval was decremented at the same time to keep the total interval fixed at . The experimental amplitudes (gray curves) are compared with the analytical functions in Eq. (57), adjusting the vertical scale of the analytical functions in each case to obtain the best fit. The dipole-dipole couplings and corresponding internuclear distances are as follows: (i) (, ); (ii) (, ); (iii) (, ); (iv) (, ); and (v) (, ). The bold line (iii) (corresponding to ) is the best fit.

Image of FIG. 9.
FIG. 9.

Double-quantum evolution trajectories as a function of the separation between the pulses in Fig. 7(b). All simulations and experiments use double-quantum excitation and reconversion intervals of . (a) Experimental data points for diammonium -fumarate (gray squares) and simulated double-quantum trajectory for the parameters given in the first column in Table I. (b) Simulated double-quantum evolution trajectories for the parameters given in the first column in Table I, except for the Euler angles , which are specified in the plot.

Image of FIG. 10.
FIG. 10.

Multiple-quantum-filtered signal amplitudes for -glycine using SR26 recoupling sequences of different durations. Left column: multiple-quantum-filtered signal amplitudes, relative to a cross-polarization experiment. Right column: representation of the same data on a logarithmic plot, using gray coloring to represent negative values, which were inverted before taking the logarithm. The error bars in the right-hand column were estimated by analyzing the data from a set of identical experiments (see text). The recoupling durations are the same for the excitation and reconversion sequences and are as follows: (a) 5.4, (b) 10.8 (c) 21.6, and (d) .

Tables

Generic image for table
Table I.

Spin interaction parameters used in the NMR simulations.

Loading

Article metrics loading...

/content/aip/journal/jcp/124/23/10.1063/1.2205857
2006-06-20
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theory and applications of supercycled symmetry-based recoupling sequences in solid-state nuclear magnetic resonance
http://aip.metastore.ingenta.com/content/aip/journal/jcp/124/23/10.1063/1.2205857
10.1063/1.2205857
SEARCH_EXPAND_ITEM