1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
Rent:
Rent this article for
USD
10.1063/1.2356863
/content/aip/journal/jcp/125/14/10.1063/1.2356863
http://aip.metastore.ingenta.com/content/aip/journal/jcp/125/14/10.1063/1.2356863
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Temperature dependence of the reduced configurational entropy per lattice site for an incompressible equilibrium polymerization solution. for the FA and A models of equilibrium polymerization is calculated from Eqs. (4) and (12), respectively, and this quantity is shown in the reduced form specified by Eq. (13). These illustrative calculations (as well as those in Figs. 2–6) are performed for completely flexible chains. Curves 1 and 2 refer to the FA model with the enthalpy and entropy of polymerization chosen as and , and and , respectively. The third curve corresponds to the activated equilibrium polymerization model that is specified by , , and (with and being the enthalpy and the entropy of activation, respectively). The above free energy estimates are consistent with previous studies of equilibrium polymerization (Refs. 33, 41, 42, and 73), and the initial monomer concentration is taken as for specific comparison to string formation in glass-forming liquids (see text). Solid symbols denote the calculated saturation temperature , the inflection point temperature where exhibits an inflection point, and the crossover temperature . All temperatures are defined in the text. Open circles designate the polymerization transition temperatures estimated from the maximum of the specific heat .

Image of FIG. 2.
FIG. 2.

The configurational entropy calculated from the generalized entropy of glass formation as a function of temperature for representative high molar mass F–F and F–S polymer fluids at a constant pressure of (Ref. 48). The configurational entropy is normalized by its maximum value and is determined from Eq. (20) of Ref. 28. The characteristic temperatures of glass formation, , , , and , are indicated in the figure. The dotted line schematically depicts a correction to the mean field configurational entropy. As noted by Wolfgardt et al. (Ref. 62), does not vanish, but instead achieves a small plateau value at low temperatures. An individual monomer of the F–F and F–S polymers contains two backbone segments and one side group with three units (like the united atom representation of 1-pentene) (Refs. 48 and 50). The F–F and F–S polymers represent chains with a flexible chain backbone and flexible side groups, and flexible chain and stiff side branches, respectively, as described in our schematic model of glass formation in polymer melts (Refs. 48–50). The bending energies and and the van der Waals interaction energy are chosen as (F–F polymers), , and (F–S polymers), while the van der Waals energy is selected to be common for these two polymer classes as . The volume associated with a single lattice site and the lattice coordination number are taken as and , respectively. Each backbone and side chain semiflexible bond pair is further taken to have of one trans and two gauche configurations.

Image of FIG. 3.
FIG. 3.

The reduced configurational entropy of Eq. (13) as a function of the reciprocal of the average degree of polymerization for an incompressible solution of associating species undergoing equilibrium polymerization. The free energy parameters are the same as those employed in Fig. 1 (curve 1), while the enthalpy and entropy for monomer activation in the low probability activation model are chosen as and (Ref. 36). The solid line presents corresponding to the AG hypothesis of an inverse proportionality between the configurational entropy and the size of the cooperatively rearranging regions (CRR) in glass-forming liquids.

Image of FIG. 4.
FIG. 4.

(a) The reduced configurational entropy (solid line) and , where is the extent of polymerization, (dashed line) as functions of temperature for the FA equilibrium polymerization model. Solid symbols indicate the calculated saturation temperature , the polymerization temperature , and the crossover temperature . The free energy parameters and the initial monomer concentration are the same as in Fig. 1 (curve 1). (b) The reduced configurational entropy (solid line) and , where is the extent of polymerization, (dashed line) as functions of temperature for the activated equilibrium polymerization model. Solid symbols indicate the calculated saturation temperature , the polymerization temperature , and the crossover temperature . The free energy parameters and the initial monomer concentration are the same as in Fig. 1 (curve 3).

Image of FIG. 5.
FIG. 5.

Comparison of the size distribution of strings from simulations of supercooled liquids and from calculations for equilibrium linear polymers in the free association (FA) model [see Eqs. (14) and (15)]. Symbols denote the simulation data of Donati et al. (Ref. 3) for three different reduced temperatures , 0.480, and 0.451, while lines are the fits to the simulation data obtained from the FH equilibrium polymerization theory. The initial monomer concentration is taken as the maximum concentration (5%) of mobile Lennard-Jones particles in the simulated glass-forming liquid. The fitted values of the enthalpy and entropy of polymerization are and , respectively. The inset presents a comparison of simulation data (Ref. 3) (triangles) for the logarithm of the average string length vs the inverse reduced temperature . The predictions (solid line) of the equilibrium polymerization theory are generated for the same free energy parameters and initial monomer concentration as used in the fits shown in the main figure.

Image of FIG. 6.
FIG. 6.

Temperature variation of the average degree of polymerization for the model of activated equilibrium polymerization that is illustrated in Fig. 1 (see curve 3). The inset presents the reciprocal of as a function of the reduced configurational entropy of Eq. (13).

Loading

Article metrics loading...

/content/aip/journal/jcp/125/14/10.1063/1.2356863
2006-10-13
2014-04-23
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
http://aip.metastore.ingenta.com/content/aip/journal/jcp/125/14/10.1063/1.2356863
10.1063/1.2356863
SEARCH_EXPAND_ITEM