1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation
Rent:
Rent this article for
USD
10.1063/1.2215613
/content/aip/journal/jcp/125/2/10.1063/1.2215613
http://aip.metastore.ingenta.com/content/aip/journal/jcp/125/2/10.1063/1.2215613
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Probability distributions of the relative concentration of particles for and chemical potential difference at several temperatures (a) below and (b) above , respectively. For clarity many independent data points have been omitted. Also, for clarity, error bars are not shown in this and the following figures, if they are comparable to the size of the symbols.

Image of FIG. 2.
FIG. 2.

Coexistence curve of the symmetrical (truncated) Lennard-Jones binary fluid in the plane of temperature and concentration , for overall density , the precise choice of potentials being given in Eqs. (1)–(4). The open circles are the simulation results for a system of particles, while the broken curve is only a guide to the eye. The solid curve indicates a fit to Eq. (13) which yields as highlighted by the horizontal dot-dashed line.

Image of FIG. 3.
FIG. 3.

Finite-size scaling plots of the susceptibility for temperatures above using the trial values of marked in the figure. The Ising values and have been accepted and simulation results for at temperatures , 1.46, 1.48, 1.50, 1.52, and 1.55 are presented. Particle numbers from to are included, as indicated (while the linear dimensions of the simulation box are ). The dashed lines are guides to the eye: in light of the degree of data collapse and the expected scaling function behavior stated in Eq. (17), the estimates and 1.421 are quite acceptable.

Image of FIG. 4.
FIG. 4.

The fourth-order cumulant plotted vs for several system sizes, as indicated in the figure. The broken horizontal line indicates the value of the at for Ising-type systems. The vertical line at represents our preferred estimate of . The smooth curves in the enlarged plot (b) are fits to tanh functions.

Image of FIG. 5.
FIG. 5.

Plot of the structure factors (a) and (b) for various temperatures vs momentum . The various curves are shifted up by 0.2 relative to one another for clarity. All data refer to a system of particles. The inset in part (b) represents an Ornstein-Zernike plot which yields estimates for via Eq. (22).

Image of FIG. 6.
FIG. 6.

Plots of (a) the reduced susceptibility and (b) the correlation length vs . Part (c) shows the variation of with . The lines represent fits using the anticipated Ising exponents. All the data refer to systems of particles.

Image of FIG. 7.
FIG. 7.

(a) Log-log plot of the mean square displacements of all the particles vs time with , for systems containing particles, at the critical concentration and the seven temperatures indicated. The plots for different are displaced by factors of 2. (b) Variation of the reduced self-diffusion constant with temperature.

Image of FIG. 8.
FIG. 8.

A log-log plot of the reduced shear viscosity vs temperature. The line represents a least squares fit to the theoretical form (28) with and , yielding an amplitude .

Image of FIG. 9.
FIG. 9.

Plot of the Stokes-Einstein diameter as defined in Eq. (29) vs temperature. The dashed line serves as a guide to the eye.

Image of FIG. 10.
FIG. 10.

Plot of the interdiffusion coefficient vs time at three different temperatures for systems of particles. The knees visible at short times are due to the discrete integration time step .

Image of FIG. 11.
FIG. 11.

Log-log plot of the interdiffusion coefficient as calculated vs . The line is a fit to the power law which yields . The data correspond to . Note that we do not show the error bars in this figure. However, error bars are shown in the subsequent presentations of the interdiffusional Onsager coefficient.

Image of FIG. 12.
FIG. 12.

Plot of the reduced Onsager coefficient vs for a system of particles. Note the “background” contribution and the sharp rise as is approached. The four highest data points span the range from 1.9% to 4% above ; but the experiments (see Ref. 11) probe the range .

Image of FIG. 13.
FIG. 13.

Finite-size scaling plots of for the critical part of the reduced interdiffusional Onsager coefficient , with , , and trial values for the effective background contribution . The approximate Ising value has been adopted and, for convenience, we have set in the abscissa variable, , that approaches unity when . The filled symbols represent data at for different system sizes of to 6400 particles and fixed density . The solid arrows on the right hand axis indicate the central theoretical estimate for the critical amplitude : see text.

Loading

Article metrics loading...

/content/aip/journal/jcp/125/2/10.1063/1.2215613
2006-07-14
2014-04-18
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Static and dynamic critical behavior of a symmetrical binary fluid: A computer simulation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/125/2/10.1063/1.2215613
10.1063/1.2215613
SEARCH_EXPAND_ITEM