1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Macroscopic evidences for non-Rice-Ramsperger-Kassel effects in the reaction between and : The occurrence of nonstatistical isotopic branching ratio
Rent:
Rent this article for
USD
10.1063/1.2742381
/content/aip/journal/jcp/126/20/10.1063/1.2742381
http://aip.metastore.ingenta.com/content/aip/journal/jcp/126/20/10.1063/1.2742381
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Process involved during the collision. (a) Potential energy surface (kcal∕mol; MP2∕aug-cc-pVTZ; OSS3, square brackets; OSS2 bracket). (b) Details of the pseudorotation inducing the proton exchange in the Zundel cation and choice of labels for the H atoms involved in the process. The process shown in this panel can be represented using the shorthand notation , where means atom moves in location previously occupied by atom .

Image of FIG. 2.
FIG. 2.

Schematic representation of the exchange and dissociation processes in the Zundel cation. Red atoms are oxygens, gray atoms are hydrogens, and blue∕green atoms are deuteriums. In the kinetic Monte Carlo scheme, and . The “ball and stick” models represent the minimum energy structure (min) and the transition state (TS) for the exchange process.

Image of FIG. 3.
FIG. 3.

Distribution of the number of trajectories with a specific total angular momentum (in a.u.) sampled during the Monte Carlo EMS simulations at three different energies.

Image of FIG. 4.
FIG. 4.

Logarithm of the rate constants vs (kcal∕mol) for the exchange (exch) and dissociation (diss) processes computed with MD simulations and statistical theories (stat) on the OSS2 surface.

Image of FIG. 5.
FIG. 5.

Angular momentum-resolved rate constants for the exchange (a) and dissociation (b) processes as a function of the angular momentum for different energies (OSS2 PES). The values of have been coarse grained using bin width of 1 and of for exchange and dissociation, respectively.

Image of FIG. 6.
FIG. 6.

Lifetime distribution for the exchange (a) and dissociation (b) processes for trajectories with and . The dashed curves represent the lifetime distribution obtained using the MD computed rate constant for the two processes.

Image of FIG. 7.
FIG. 7.

Branching ratio as a function of the internal energy of the Zundel cation. “MDD mass” and “MD” indicate results obtained using trajectories employ for H and D either the correct isotopic mass or, disregarding the difference, the proton mass for both. “KMC” indicates results obtained using kinetic Monte Carlo, whereas “statistical ratio” gives the statistical probability of dissociating in isotopically different species starting from a randomized .

Image of FIG. 8.
FIG. 8.

Time evolution of the O–O distance and internal coordinates for two representative trajectories with different values of : (a) 82 and (b) . To improve the clarity of the pictures, the oxygen-oxygen distance (lowest line, red) has been scaled by a factor of 0.95. For the same reason, some of the curves representing for the protons are shown only in the vicinity of exchange events. The latter are defined as the time when , i.e., as the crossing time of two different curves (different colors). Notice that exchanges happen primarily close to the outer or inner turning points of the oxygen-oxygen vibration, and that, upon increasing the energy, the frequency of two exchanges happening after a short time gap increases substantially, leading to more exchanges clustered together.

Image of FIG. 9.
FIG. 9.

Energy dependence of the delay time (ps) probability for two consecutive exchanges obtained using the OSS2 potential. The numbers in brackets represent the fraction of exchange events with .

Image of FIG. 10.
FIG. 10.

Fraction of consecutive exchanges happening within (red) or after (blue) . The solid lines represent a reverse rotation , the long dashed lines indicate a rotation in the same direction of the original exchange , and the short dashed lines are exchanges with protons or [Fig. 1(b)].

Image of FIG. 11.
FIG. 11.

Energy barrier for the pseudorotation of the moiety in the Zundel cation as a function of the O–O distance computed using the OSS2 potential.

Loading

Article metrics loading...

/content/aip/journal/jcp/126/20/10.1063/1.2742381
2007-05-23
2014-04-21
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Macroscopic evidences for non-Rice-Ramsperger-Kassel effects in the reaction between H3O+ and D2O: The occurrence of nonstatistical isotopic branching ratio
http://aip.metastore.ingenta.com/content/aip/journal/jcp/126/20/10.1063/1.2742381
10.1063/1.2742381
SEARCH_EXPAND_ITEM