1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Vibrational modes in partially optimized molecular systems
Rent:
Rent this article for
USD
10.1063/1.2737444
/content/aip/journal/jcp/126/22/10.1063/1.2737444
http://aip.metastore.ingenta.com/content/aip/journal/jcp/126/22/10.1063/1.2737444

Figures

Image of FIG. 1.
FIG. 1.

Schematic representation of the basic idea behind the MBH method. The shaded blocks symbolize the parts of the molecule of which the internal geometry is kept fixed during the partial geometry optimization. In the MBH approach, they are described as rigid bodies with six degrees of freedom (translations and rotations).

Image of FIG. 2.
FIG. 2.

Vibrational contribution to the entropy and the free enthalpy calculated with PHVA (엯) and MBH (×) frequencies are given for the different partially optimized ethanol configurations at . Benchmark values are indicated by the dashed lines. The fixed block in the MBH calculation consists of the atoms in the shaded box.

Image of FIG. 3.
FIG. 3.

Specification of the various configurations of di--octyl-ether with rigid bodies indicated as shaded regions. Atoms in shaded boxes are fixed at positions during the partial geometry optimization at the level.

Image of FIG. 4.
FIG. 4.

Lowest frequencies (in ) of di--octyl-ether based on the full Cartesian Hessian belonging to the various partially optimized configurations defined in Fig. 3. Partial optimization at the level. Plot on the left displays the exact normal mode frequencies (full geometry optimization) that serve as benchmark.

Image of FIG. 5.
FIG. 5.

Lowest frequencies (in ) of di--octyl-ether based on the multiple MBH model belonging to the various partially optimized configurations defined in Fig. 3. Partial geometry optimization at the level. Plot on the left displays the exact normal mode frequencies (full geometry optimization) that serve as benchmark for the other plots where two rigid bodies (defined by the configuration label) are taken into account in the frequency analysis.

Image of FIG. 6.
FIG. 6.

The PHVA method implies the introduction of one block. For the multiple MBH method, two rigid blocks were used.

Image of FIG. 7.
FIG. 7.

Square of the overlap between the MBH normal modes and the benchmark normal mode frequencies of di--octyl-ether. The sum of the strengths is always normalized to 1 for each MBH frequency.

Tables

Generic image for table
Table I.

Normal mode frequencies (in ) of ethanol derived from the benchmark geometry, which corresponds to the geometry optimization obtained at . The rigid body is composed of the atoms in the shaded region. In the left column, translational and rotational frequencies from the full Hessian calculation are plotted before and after projection. Vibrational frequencies are not affected by this projection. The PHVA and MBH frequencies were ordered according to the maximum overlap with the benchmark modes.

Generic image for table
Table II.

Normal mode frequencies (in ) of ethanol derived on the basis of partially optimized geometries at the level of theory. The rigid body is composed of atoms in the shaded region and its geometry is originated from a geometry optimization of the whole molecule at the low level. Benchmark frequencies are given in the left column for comparison. The PHVA and MBH frequencies were ordered according to the maximum overlap with the benchmark modes.

Generic image for table
Table III.

Frequencies (in ) of di--octyl-ether of various partially optimized configurations defined in Fig. 3 are compared with the benchmark frequencies of the fully optimized geometry (left column). Three approaches are used: the full Hessian calculation (Full), the PHVA method, and the MBH approach. The size of the rigid bodies is defined by the configuration label. The Full/PHVA/MBH frequencies are ordered according to the maximum overlaps with benchmark eigenmodes, which are given by the values between parentheses (in %).

Loading

Article metrics loading...

/content/aip/journal/jcp/126/22/10.1063/1.2737444
2007-06-12
2014-04-23
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Vibrational modes in partially optimized molecular systems
http://aip.metastore.ingenta.com/content/aip/journal/jcp/126/22/10.1063/1.2737444
10.1063/1.2737444
SEARCH_EXPAND_ITEM