1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces
Rent:
Rent this article for
USD
10.1063/1.2743423
/content/aip/journal/jcp/127/1/10.1063/1.2743423
http://aip.metastore.ingenta.com/content/aip/journal/jcp/127/1/10.1063/1.2743423

Figures

Image of FIG. 1.
FIG. 1.

A mixed discrete-continuum model for biomolecule electrostatics. The surface represents the dielectric boundary between regions with dielectric constants and . Partial atomic charges are located in region I, with illustrative charges at and at . The Debye screening parameter is zero within region I and may be nonzero in region II. In work not described here, an ion-exclusion layer may also be treated (Refs. 29 and 30).

Image of FIG. 2.
FIG. 2.

Three definitions of solute-solvent boundaries, shown for a two-atom case: (a) van der Waals surface, (b) the Lee and Richards solvent-accessible surface, and (c) the Richards solvent-excluded (molecular) surface. The dotted lines in (b) and (c) denote the van der Waals surface.

Image of FIG. 3.
FIG. 3.

Specification of a torus and a torus element with and .

Image of FIG. 4.
FIG. 4.

A generalized spherical triangle (GST) with one bounding edge belonging to the circle centered at the blue dot. The remaining edges belong to great circles on the sphere.

Image of FIG. 5.
FIG. 5.

(a) The standard unit triangle in parametric coordinate space. (b) A GST viewed from the negative axis. The angle is measured relative to the positive axis. Each is mapped to one plane with normal along the axis; the plane intersects the sphere and defines a circle. (c) A GST viewed from the positive axis. The dashed lines indicate the circle of intersection between the sphere surface and the plane specified by . The angle specifies the rotation about the axis. The image of the standard-triangle vertices under the coordinate transformation are labeled.

Image of FIG. 6.
FIG. 6.

Schematic of the approach for evaluating the potential induced by a distribution of monopole charge on a generalized spherical triangle. A planar reference element viewed edge on (blue) is defined to be tangent to the original GST (black solid arc) at the GST centroid. The reference element vertices are defined to be the projection of the GST vertices to the plane tangent to the GST centroid.

Image of FIG. 7.
FIG. 7.

The Newman approach to calculating the potential induced by a uniform distribution of a normally oriented dipole charge layer (Ref. 13). The cross at the center of the sphere denotes the point at which the potential is to be determined; the thin arcs form the edges of a GST; the thick lines represent the projection of the GST bounding arcs to the sphere. The double-layer potential, which equals the solid angle bounded by the thick lines, is directly proportional to the bounded area.

Image of FIG. 8.
FIG. 8.

Edges may be projected to the unit sphere regardless of their position relative to it. (left) The edges are outside the unit sphere. (right) The edges are interior to the unit sphere.

Image of FIG. 9.
FIG. 9.

Generalized-Born radii calculated by volume integration and by evaluating surface integrals based on the GB model proposed by Grycuk (Ref. 39). The volume radii are plotted as large squares and the surface GB radii are plotted with circles, triangles, crosses, and diamonds. (a) Alpha-helix blocked alanine tripeptide. (b) Beta-sheet blocked alanine tripeptide.

Image of FIG. 10.
FIG. 10.

Convergence of solvation free energies for a centrally located charge in a sphere, calculated by BEM numerical solution of the Yoon and Lenhoff integral equations. For both cases and . (a) . (b) .

Image of FIG. 11.
FIG. 11.

Solvation free energies for four conformers of the alanine dipeptide; atom centers are those presented in Ref. 61 and PARSE atomic radii and partial charges have been used (Ref. 62). (a) c5 geometry. (b) geometry. (c) c7ax geometry. (d) c7eq geometry.

Tables

Generic image for table
Table I.

Comparison of discretized surface areas with analytical molecular (solvent-excluded) surface area. Probe radius is taken to be . All area quantities are in and have been rounded to the nearest .

Generic image for table
Table II.

Comparison of discretized surface areas with analytical solvent-accessible surface area. Probe radius is taken to be . All area quantities are in and have been rounded to the nearest .

Generic image for table
Table III.

Comparison of pit, belt, and cap areas computed by analytical, direct quadrature, and polynomial-fitting methods, using the molecular surface discretizations of Sec. V B. All area quantities are in and have been rounded to the nearest .

Generic image for table
Table IV.

Solute-solvent van der Waals interaction energies estimated using a volume integration scheme and using a surface formulation of the continuum van der Waals model of Levy et al. (Ref. 8) and curved surface elements. All energies are in kcal/mol and have been rounded to the nearest .

Generic image for table
Table V.

Approximate number of panel integrals per second computable using a C implementation of the presented techniques. All planar-triangle integrals have been computed by the methods of Hess and Smith (Ref. 12) or Newman (Ref. 13). All far-field curved-element integrals have been computed using a 16-point quadrature rule. Self-term and near-field GST integrals have been computed using the polynomial-fitting scheme. Self-term and near-field toroidal element integrals have been computed by recursive subdivision. A single-layer integral has been defined to be in the far field if the separation between the evaluation (field) point and the curved element exceeds four times the length of the element’s longest edge; a double-layer integral is defined to be in the far field if the separation exceeds twice the length of the longest edge.

Loading

Article metrics loading...

/content/aip/journal/jcp/127/1/10.1063/1.2743423
2007-07-02
2014-04-18
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces
http://aip.metastore.ingenta.com/content/aip/journal/jcp/127/1/10.1063/1.2743423
10.1063/1.2743423
SEARCH_EXPAND_ITEM