banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Contribution of rotational diffusion to pulsed field gradient diffusion measurements
Rent this article for


Image of FIG. 1.
FIG. 1.

(Color online) (a) Illustration of how rotational motion contributes to the displacement function of a point at distance from the center of a sphere. (b) When this single rotation is considered in addition to a translational diffusion, it can be seen that it acts to shift the Gaussian translational displacement distribution by a constant distance . (c) for spheres of radii (red), (green), and (blue) for using the explicit form of Eq. (5) given in Appendix A. For each sphere, the distribution in the absence of rotation is shown, together with the distribution obtained in the limit of unrestricted diffusion. Remarkably, the displacement function for the rotating sphere closely resembles that of the sphere. The inset shows the difference between the displacement distribution functions in the static and rotating cases. For spheres of radii , there is no difference between these two cases. For larger spheres, rotational motion promotes an increase in longer displacements at the expense of shorter displacements. (d) Inset: simulated restricted distribution functions for rods of length and radius , calculated as described in Sec. IV. Distribution curves are drawn for from (black) and compared to an unrestricted diffusion simulation (red). These values are fitted to Eq. (3) to obtain an effective radius, and plotted against in the main figure (black points). These values are compared with the theoretical estimate for from Eq. (7) (red) and that for a rod of length (green) which reaches its unrestricted diffusion limit much more rapidly than a rod.

Image of FIG. 2.
FIG. 2.

(Color online) Rotational diffusion factors for spheres (black surfaces) and rods (white surfaces). (a) The restricted diffusion factor from Eq. (7). When this factor equals unity, rotations are unrestricted and is independent of . For short diffusion delays and larger particles, the factor is less than unity, and rotations are restricted. (b) The behavior of the preexponential factor . When equals unity, the ST equation is being obeyed, and rotational motion will not contribute to NMR diffusion measurements. The surfaces with red lines are calculated in the freely rotating limit, and the surfaces with blue lines are calculated for restricted diffusion, with for both spheres and rods. Increasing causes the surface in the restricted case to tend towards that of the freely rotating limit, and decreasing causes it to tend to the static limit of unity. When , i.e., where species are larger than , rotational motion will significantly contribute to the observed signal attenuation measured in a PFGSE experiment.

Image of FIG. 3.
FIG. 3.

(Color online) Simulated NMR intensity data and for rigid rods. (a) Intensity data as a function of for rods of length , and ranging from in the freely rotating limit (blue lines), under restricted rotation (red lines), and in the static limit (green lines). As plotted, the gradient of the intensity data is independent of in the static regime. (b) against obtained from taking the gradients of the plots in (a). is a function of the experimental diffusion delay. (c) Simulated data for of increasing length in the freely rotating limit (blue surface) and static limit (green surface). (d) Variation of effective diffusion coefficients with rod length and . As the rod length exceeds , in the freely rotating limit is significantly larger than that expected from the effects of translational diffusion alone.

Image of FIG. 4.
FIG. 4.

The vectors that define the rotation of a point on the surface of a sphere.

Image of FIG. 5.
FIG. 5.

The effect of sets of equivalent rotations on for ellipsoids.


Generic image for table
Table I.

Translational, , and rotational, , friction factors, preexponential factors , and limiting preexponential functions for idealized geometries. is the viscosity, is the radius, and is the rod length.


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Contribution of rotational diffusion to pulsed field gradient diffusion measurements