1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/127/14/10.1063/1.2761869
1.
1.L. A. Montero, L. Alfonso, J. R. Alvarez, and E. Perez, Int. J. Quantum Chem. 37, 465 (1990).
http://dx.doi.org/10.1002/qua.560370416
2.
2.L. Montero, in Química Teórica: Estructura, Interacciones y Reactividad, edited by S. Fraga (Consejo Superior de Investigaciones Científicas, Madrid, 1987), Vol. 1, p. 73.
3.
3.J. Pople and D. Beveridge, Approximate Molecular Orbital Theory (McGraw-Hill, New York, 1970).
4.
4.J. Hinze and H. H. Jaffe, J. Am. Chem. Soc. 84, 540 (1962).
http://dx.doi.org/10.1021/ja00863a008
5.
5.E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
http://dx.doi.org/10.1063/1.1733573
6.
6.K. Nishimoto and N. Mataga, Z. Phys. Chem. (Munich) 12, 335 (1957).
7.
7.K. Ohno, Theor. Chim. Acta 2, 219 (1964).
http://dx.doi.org/10.1007/BF00528281
8.
8.D. Hegarty and M. Robb, Mol. Phys. 38, 1795 (1979).
http://dx.doi.org/10.1080/00268977900102871
9.
9.M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996);
http://dx.doi.org/10.1103/PhysRevLett.76.1212
9.M. Cossi and V. Barone, J. Chem. Phys. 115, 4708 (2001).
http://dx.doi.org/10.1063/1.1394921
10.
10.J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
http://dx.doi.org/10.1021/j100180a030
11.
11.M. Nooijen and R. J. Bartlett, J. Chem. Phys. 106, 6441 (1997).
http://dx.doi.org/10.1063/1.474000
12.
12.J. Del Bene and H. H. Jaffe, J. Chem. Phys. 48, 1807 (1968).
http://dx.doi.org/10.1063/1.1668915
13.
13.M. C. Zerner, G. H. Loew, R. F. Kirchner, and U. T. Mueller-Westerhoff, J. Am. Chem. Soc. 102, 589 (1980).
http://dx.doi.org/10.1021/ja00522a025
14.
14.A. Schweig and W. Thiel, J. Am. Chem. Soc. 103, 1425 (1981).
http://dx.doi.org/10.1021/ja00400a052
15.
15.W. Thiel, J. Am. Chem. Soc. 103, 1413 (1981).
http://dx.doi.org/10.1021/ja00400a052
16.
16.G. Rauhut, A. Alex, J. Chandrasekhar, T. Steinke, W. Sauer, B. Beck, M. Hutter, P. Gedeck, and T. Clark, VAMP, Oxford Molecular Ltd., Oxford, 1997.
17.
17.A. A. Voityuk, M. C. Zerner, and N. Roesch, J. Phys. Chem. A 103, 4553 (1999).
http://dx.doi.org/10.1021/jp9902001
18.
18.F. Neese, J. Chem. Phys. 119, 9428 (2003).
http://dx.doi.org/10.1063/1.1615956
19.
19.J. Fabian, L. Diaz, G. Seifert, and T. Niehaus, THEOCHEM 594, 41 (2002).
http://dx.doi.org/10.1016/S0166-1280(02)00322-6
20.
20.L. Serrano-Andres and M. Merchan, THEOCHEM 729, 99 (2005).
http://dx.doi.org/10.1016/j.theochem.2005.03.020
21.
21.J. A. Pople and G. A. Segal, J. Chem. Phys. 43, S136 (1965).
http://dx.doi.org/10.1063/1.1701476
22.
22.J. A. Pople and G. A. Segal, J. Chem. Phys. 44, 3289 (1966).
http://dx.doi.org/10.1063/1.1727227
23.
23.R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, J. Chem. Phys. 17, 1248 (1949).
http://dx.doi.org/10.1063/1.1747150
24.
24.K. Hiruta, S. Tokita, T. Tachikawa, F. Noguchi, and K. Nishimoto, J. Chem. Soc., Perkin Trans. 1 2001, 975;
24.P. C. Jha, M. Das, and S. Ramasesha, J. Phys. Chem. A 108, 6279 (2004).
http://dx.doi.org/10.1021/jp048991g
25.
25.R. G. Parr, The Quantum Theory of Molecular Electronic Structure (Benjamin, New York, 1963).
26.
26.R. Pariser, J. Chem. Phys. 21, 568 (1953).
http://dx.doi.org/10.1063/1.1698963
27.
27.N. Mataga and K. Nishimoto, Z. Phys. Chem. (Munich) 13, 140 (1957).
28.
28.J. A. Pople, Proc. Phys. Soc., London, Sect. A 68A, 81 (1955).
http://dx.doi.org/10.1088/0370-1298/68/2/304
29.
29.L. A. Montero-Cabrera and R. Crespo, NDOL2005, a computer program for calculation of electron excitation and excited state properties of molecules, Havana, 2005.
30.
30.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, 1998.
31.
31.A. Laio, J. VandeVondele, and U. Rothlisberger, J. Chem. Phys. 116, 6941 (2002).
http://dx.doi.org/10.1063/1.1462041
32.
32.D. C. Teller, T. Okada, C. A. Behnke, K. Palczewski, and R. E. Stenkamp, Biochemistry 40, 7761 (2001).
http://dx.doi.org/10.1021/bi0155091
33.
33.J. Hutter, CPMD, Carr-Parrinello Molecular Dynamics, IBM Corp, Stuttgart, 2001.
34.
34.J. Wang, P. Cieplak, and P. Kollman, J. Comput. Chem. 21, 1049 (2000).
http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
35.
35.N. Trouillier and J. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
36.
36.U. F. Rohrig, L. Guidoni, and U. Rothlisberger, ChemPhysChem 6, 1836 (2005).
http://dx.doi.org/10.1002/cphc.200500066
37.
37.Y. Pérez Badell, L. A. Montero, and C. Perez, Theor. Chim. Acta 769, 77 (2006);
37.N. Mora-Diez, L. A. Montero, and J. Fabian, Theor. Chim. Acta 453, 49 (1998);
37.E. Cruz, A. Garcia, L. Ballester, and L. A. Montero, Revista Cubana de Química 8, 26 (1996);
37.L. A. Montero, R. Gonzalez-Jonte, L. A. Diaz, and J. R. Alvarez-Idaboy, J. Phys. Chem. 98, 5607 (1994);
http://dx.doi.org/10.1021/j100073a005
37.L. A. Montero, J. R. Alvarez-Idaboy, and S. A. Medina, in Computational Chemistry. Structure Interactions and Reactivity, edited by S. Fraga (Elsevier, Amsterdam, 1992), Vol. 77, pp. 67.
38.
38.J. A. Padron-Garcia, R. Crespo-Otero, E. W. Hernandez-Rodriguez, P. Garriga, L. A. Montero, and J. C. Garcia-Pineiro, Proteins 57, 392 (2004).
39.
39.L. A. Montero, L. A. Diaz, and N. Castillo, Chem. Phys. Lett. 364, 176 (2002).
40.
40.S. G. M. Portugal, L. A. Montero-Cabrera, L. A. Diaz, and I. M. Brinn, J. Photochem. Photobiol., A 181, 370 (2006).
41.
41.L. J. Weimann, G. M. Maggiora, and P. E. Blatz, Int. J. Quantum Chem., Quantum Biol. Symp. 2, 9 (1975).
42.
42.A.-N. Bondar, S. Suhai, S. Fischer, J. C. Smith, and M. Elstner, J. Struct. Biol. 157, 454 (2007);
42.S. Sekharan, M. Sugihara, and V. Buss, Angew. Chem., Int. Ed. 46, 269 (2007);
http://dx.doi.org/10.1002/anie.200603306
42.K. Fujimoto, S. Hayashi, J.-Y. Hasegawa, and H. Nakatsuji, J. Chem. Theory Comput. 3, 605 (2007);
42.M. Wanko, M. Hoffmann, T. Frauenheim, and M. Elstner, J. Comput.-Aided Mol. Des. 20, 511 (2006);
http://dx.doi.org/10.1007/s10822-006-9069-8
42.M. Sugihara, J. Hufen, and V. Buss, Biochemistry 45, 801 (2006);
42.C. Silva López, O. Nieto Faza, S. Lopez Estévez, and A. R. De Lera, J. Comput. Chem. 27, 116 (2006);
http://dx.doi.org/10.1002/jcc.20305
42.S. Sekharan, O. Weingart, and V. Buss, Biophys. J. 91, L7 (2006);
42.M. Schreiber, M. Sugihara, T. Okada, and V. Buss, Angew. Chem., Int. Ed. 45, 4274 (2006);
42.S. Schenkl, F. van Mourik, N. Friedman, M. Sheves, R. Schlesinger, S. Haacke, and M. Chergui, Proc. Natl. Acad. Sci. U.S.A. 103, 4101 (2006);
42.R. M. L. Savedra, M. F. S. Pinto, and M. Trsic, J. Chem. Phys. 125, 1449011 (2006);
42.D. Riccardi, P. Schaefer, Y. Yang, H. Yu, N. Ghosh, X. Prat-Resina, P. Koenig, G. Li, D. Xu, H. Guo, M. Elstner, and Q. Cui, J. Phys. Chem. B 110, 6458 (2006);
http://dx.doi.org/10.1021/jp056361o
42.A. M. Losa, I. F. Galvan, M. E. Martin, and M. A. Aguilar, J. Phys. Chem. B 110, 18064 (2006);
42.M. O. Lenz, R. Huber, B. Schmidt, P. Gilch, R. Kalmbach, M. Engelhard, and J. Wachtveitl, Biophys. J. 91, 255 (2006).
43.
43.J. Romand and B. Vodar, Compt. Rend. 233, 930 (1951).
44.
44.R. Zwarich and I. Rabinowitz, J. Chem. Phys. 63, 4565 (1975).
http://dx.doi.org/10.1063/1.431265
45.
45.L. A. Montero, A. M. Esteva, J. Molina, A. Zapardiel, L. Hernandez, H. Marquez, and A. Acosta, J. Am. Chem. Soc. 120, 12023 (1998).
46.
46.L. Edwards, D. H. Dolphin, M. Gouterman, and A. D. Adler, J. Mol. Spectrosc. 38, 16 (1971).
http://dx.doi.org/10.1016/0022-2852(71)90090-7
47.
47.K. K. Innes and L. E. G., Jr., J. Mol. Spectrosc. 7, 435 (1961).
http://dx.doi.org/10.1016/0022-2852(61)90376-9
48.
48.L. Lagesson-Andrasko, V. Lagesson, and J. Andrasko, Anal. Chem. 70, 819 (1998).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/127/14/10.1063/1.2761869
Loading
/content/aip/journal/jcp/127/14/10.1063/1.2761869
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/127/14/10.1063/1.2761869
2007-10-09
2015-06-30

Abstract

Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in , very similar to the known experimental value of of “dark state.” In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/127/14/1.2761869.html;jsessionid=9eeiq5dlkk6pn.x-aip-live-03?itemId=/content/aip/journal/jcp/127/14/10.1063/1.2761869&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: CNDOL: A fast and reliable method for the calculation of electronic properties of very large systems. Applications to retinal binding pocket in rhodopsin and gas phase porphine
http://aip.metastore.ingenta.com/content/aip/journal/jcp/127/14/10.1063/1.2761869
10.1063/1.2761869
SEARCH_EXPAND_ITEM