1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Development of knotting during the collapse transition of polymers
Rent:
Rent this article for
USD
10.1063/1.2806929
/content/aip/journal/jcp/127/24/10.1063/1.2806929
http://aip.metastore.ingenta.com/content/aip/journal/jcp/127/24/10.1063/1.2806929

Figures

Image of FIG. 1.
FIG. 1.

Schematics of the chain rearrangement maneuvers employed.

Image of FIG. 2.
FIG. 2.

Snapshots of several chain conformations. (a) Good solvent, . (b) Theta solvent, . (c) Very poor solvent, collapsed chain, . (d) Inhomogeneous model, bulk of chain is collapsed, end segments under good-solvent conditions and therefore exposed, , .

Image of FIG. 3.
FIG. 3.

Size scaling for the indicated values of the contact potential. The theta point is assigned to be , since then . Fluctuations are strongest as we pass through the transition , and so there the results display some sampling error.

Image of FIG. 4.
FIG. 4.

Variation of through the collapse transition for chains of length . The approximate position of the theta point is indicated.

Image of FIG. 5.
FIG. 5.

Variation of the mean knot complexity score through the collapse transition for chains of length . The approximate position of the theta point is indicated.

Image of FIG. 6.
FIG. 6.

Probability that a chain is found without a knot as a function of chain length and at various values of the contact potential. Curves for are labeled with values. Curves for all display probabilities near 1 and appear near the top of the graph. The horizontal dashed curve corresponds to and determines, by interpolation or extrapolation, the value of .

Image of FIG. 7.
FIG. 7.

The value controls the crossover from unknotted to knotted behavior. Its variation as a function of the contact potential is shown. The approximate location of the theta point is indicated.

Image of FIG. 8.
FIG. 8.

Snapshots of a collapsing chain at several moments during collapse. At , three “pearls” have condensed along the chain (enclosed in circles). One pearl grows at the expense of the others until the globule has formed at . The globule at is still not at equilibrium, we must wait much longer to see its knot state reach equilibrium.

Image of FIG. 9.
FIG. 9.

The relaxation functions and for both the homogeneous and the inhomogeneous models. Relaxation times for and for the homogeneous model; 100 and 960, respectively, are estimated from the slopes of the least-squares lines, shown dashed. The function remains very close to 0 over the course of the simulation, except for a minor fluctuation near , indicating that knots do not form in the inhomogeneous model.

Tables

Generic image for table
Table I.

Columns 2 and 3 give the unnormalized selection probabilities for each type of maneuver. To anneal a chain, all maneuvers are appropriate, while to model dynamics, we restrict ourselves to local maneuvers. Column 4 displays the change in chain length that accompanies each maneuver.

Generic image for table
Table II.

Comparison of simulation vs exact enumeration results on short chains. is the mean chain length, is the radius of gyration, and is the probability of finding a chain of length .

Generic image for table
Table III.

Occurance probability of each of the indicated knots or knot classes in chains of length at the indicated values of the contact potential, . The last column gives the knot complexity score for the indicated knot. The knot class designation U.C. indicates “unrecognizably complex,” or a knot too complex for its knot state to be determined by the knot group technique.

Loading

Article metrics loading...

/content/aip/journal/jcp/127/24/10.1063/1.2806929
2007-12-26
2014-04-25
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Development of knotting during the collapse transition of polymers
http://aip.metastore.ingenta.com/content/aip/journal/jcp/127/24/10.1063/1.2806929
10.1063/1.2806929
SEARCH_EXPAND_ITEM