1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Turbo charging time-dependent density-functional theory with Lanczos chains
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/128/15/10.1063/1.2899649
1.
1.E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
2.
2.G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.601
3.
3.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
4.
4.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
5.
5.R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00440-X
6.
6.M. E. Casida, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong (World Scientific, Singapore, 1995), p. 155.
7.
7.D. J. Thouless, Nucl. Phys. 21, 225 (1960).
http://dx.doi.org/10.1016/0029-5582(60)90048-1
8.
8.A. D. McLachlan and M. A. Ball, Rev. Mod. Phys. 36, 844 (1964).
http://dx.doi.org/10.1103/RevModPhys.36.844
9.
9.J. Olsen, H. J. A. Jensen, and P. Jørgensen, J. Comput. Phys. 74, 265 (1988).
http://dx.doi.org/10.1016/0021-9991(88)90081-2
10.
10.R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998).
http://dx.doi.org/10.1063/1.477483
11.
11.I. Tamm, J. Phys. (Moscow) 9, 449 (1945).
12.
12.S. M. Dancoff, Phys. Rev. 78, 382 (1950).
http://dx.doi.org/10.1103/PhysRev.78.382
13.
13.S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01149-5
14.
14.S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.1861
15.
15.X. Gonze, Phys. Rev. A 52, 1096 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.1096
16.
16.S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.515
17.
17.F. Furche, J. Chem. Phys. 114, 5982 (2001);
http://dx.doi.org/10.1063/1.1353585
17.F. Furche, personal communication (2007).
18.
18.J. Hutter, J. Chem. Phys. 118, 3928 (2003).
http://dx.doi.org/10.1063/1.1540109
19.
19.J. R. Chelikowsky, Y. Saad, and I. Vasiliev, Time-Dependent Density Functional Theory, Lecture Notes in Physics Vol. 706 (Springer-Verlag, Berlin, Heidelberg, 2006), Chap. 17, pp. 259269.
20.
20.F. Furche and D. Rappoport, in Computational Photochemistry, Theoretical and Computational Chemistry Vol. 16, edited by M. Olivucci (Elsevier Science, Amsterdam, 2005), Chap. III, pp. 93128.
21.
21.M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1212
22.
22.K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.4484
23.
23.M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Comput. Phys. Commun. 151, 60 (2003).
http://dx.doi.org/10.1016/S0010-4655(02)00686-0
24.
24.X. Qian, J. Li, X. Lin, and S. Yip, Phys. Rev. B 73, 035408 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.035408
25.
25.B. Walker and R. Gebauer, J. Chem. Phys. 127, 164106 (2007).
http://dx.doi.org/10.1063/1.2786999
26.
26.B. Walker, A. M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.113001
27.
27.D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
28.
28.E. Tsiper, J. Phys. B 34, L401 (2001).
http://dx.doi.org/10.1088/0953-4075/34/12/102
29.
29.C. Ochsenfeld and M. Head-Gordon, Chem. Phys. Lett. 270, 399 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00402-8
30.
30.The batch representation of response functions has been rediscovered several times, and given several different names, in the quantum chemistry community, since it was introduced in the context of DFPT (Ref. 14). See, e.g., Refs. 17, 29, and 18.
31.
31.Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (SIAM, Philadelphia, 2003).
32.
32.R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 5, 2845 (1972).
http://dx.doi.org/10.1088/0022-3719/5/20/004
33.
33.R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 8, 2591 (1975).
http://dx.doi.org/10.1088/0022-3719/8/16/011
34.
34.D. W. Bullet, R. Haydock, V. Heine, and M. Kelly, Solid State Physics (Academic, New York, 1980), Vol. 35.
35.
35.G. Grosso and G. P. Parravivicini, Adv. Chem. Phys. 62, 133 (1985).
36.
36.G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. (Johns Hopkins University Press, Baltimore, MD, 1996).
37.
37.Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (SIAM, Philadelphia, 2003), p. 185.
38.
38.Y. Saad, Proceedings of the International Symposium MTNS-89, edited by M. A. Kaashoek, J. H. van Schuppen, and A. C. Ran (Birkhauser, Boston, 1990), Vol. 3, pp. 401410.
39.
39.P. Feldmann and R. W. Freund, EURO-DAC ’94: Proceedings of the Conference on European Design Automation (IEEE Computer Society Press, Los Alamitos, 1994), pp. 170175.
40.
40.E. J. Grimme, D. C. Sorensen, and P. Van Dooren, Numer. Algorithms 12, 1 (1996).
http://dx.doi.org/10.1007/BF02141739
41.
41.K. Yabana and G. F. Bertsch, Int. J. Quantum Chem. 75, 55 (1999).
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:1<55::AID-QUA6>3.0.CO;2-K
42.
42.QUANTUM ESPRESSO is a community project for high-quality quantum-simulation software, based on density-functional theory, coordinated by Paolo Giannozzi. See http://www.quantum-espresso.org and http://www.pwscf.org.
43.
43.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
44.
44.Ultrasoft pseudopotentials are taken from the public QUANTUM ESPRESSO pseudopotential library. Pseudopotential files can be downloaded from URL http://www.pwscf.org/pseudo/1.3/UPF/xxx, where xxx = C.pbe-rrkjus.UPF, H.pbe-rrkjus.UPF, C.pw91-van_ak.UPF, H.pw91-van_ak.UPF, Mg.pw91-np-van.UPF.N.pw91-van_ak.UPF.o.pw91-van_ak.UPF.
45.
45.E. E. Koch and A. Otto, Chem. Phys. Lett. 12, 476 (1972).
http://dx.doi.org/10.1016/0009-2614(72)90011-5
46.
46.A. R. A. Castro and M. A. L. Marques, J. Chem. Phys. 121, 3425 (2004).
http://dx.doi.org/10.1063/1.1774980
47.
47.B. N. Parlett, D. R. Taylor, and Z. S. Liu, Math. Comput. 44, 105 (1985).
http://dx.doi.org/10.2307/2007796
48.
48.R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, SIAM J. Sci. Comput. (USA) 14, 470 (1993).
http://dx.doi.org/10.1137/0914029
49.
49.J. Cullum, W. Kerner, and R. Willoughby, Comput. Phys. Commun. 53, 19 (1989).
50.
50.P. Turchi, F. Ducastelle, and G. Treglia, J. Phys. C 15, 2891 (1982).
http://dx.doi.org/10.1088/0022-3719/15/13/017
51.
51.R. Bauernschmit, R. Ahlrichs, F. H. Hennrich, and M. M. Kappes, J. Am. Chem. Soc. 120, 5052 (1998).
http://dx.doi.org/10.1021/ja9730167
52.
52.S. Leach, R. Vervloet, A. Despres, E. Breheret, J. P. Hare, T. J. Dennis, R. Taylor, and D. R. M. Walton, Chem. Phys. 160, 451 (1992).
http://dx.doi.org/10.1016/0301-0104(92)80012-K
53.
53.T. A. Niehaus, S. Suhai, F. della Sala, P. Lugli, M. Elstner, G. Seifert, and T. Fraunheim, Phys. Rev. B 63, 085108 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.085108
54.
54.A. Tsolakidis, D. Sànchez-Portal, and R. M. Martin, Phys. Rev. B 66, 235416 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.235416
55.
55.X. Blase and P. Ordejón, Phys. Rev. B 69, 085111 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085111
56.
56.M. Gouterman, J. Mol. Spectrosc. 6, 138 (1961).
http://dx.doi.org/10.1016/0022-2852(61)90236-3
57.
57.D. Sundholm, Chem. Phys. Lett. 302, 480 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00194-3
58.
58.D. Sundholm, Chem. Phys. Lett. 317, 545 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01428-1
59.
59.J. Linnanto and J. Korppi-Tommola, Phys. Chem. Chem. Phys. 2, 4962 (2000).
http://dx.doi.org/10.1039/b004998k
60.
60.M. G. Dahlbom and J. R. Reimers, Mol. Phys. 103, 1057 (2005).
61.
61.J. Linnanto and J. Korppi-Tommola, Phys. Chem. Chem. Phys. 8, 663 (2006).
http://dx.doi.org/10.1039/b513086g
62.
62.Z. L. Cai, M. J. Crossley, J. R. Reimers, R. Kobayashi, and R. D. Amos, J. Phys. Chem. B 110, 15624 (2006).
http://dx.doi.org/10.1021/jp063376t
63.
63.J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
64.
64.H. Du, R. C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, Photochem. Photobiol. 68, 141 (1998);
http://dx.doi.org/10.1562/0031-8655(1998)068<0141:PACADA>2.3.CO;2
65.
65.S. Wang, Phys. Rev. A 60, 262 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.262
http://aip.metastore.ingenta.com/content/aip/journal/jcp/128/15/10.1063/1.2899649
Loading
/content/aip/journal/jcp/128/15/10.1063/1.2899649
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/128/15/10.1063/1.2899649
2008-04-16
2014-10-24

Abstract

We introduce a new implementation of time-dependent density-functional theory which allows the entirespectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a single standard ground-state calculation. This method is particularly well suited for large systems and/or large basis sets, such as plane waves or real-space grids. By using a superoperator formulation of linearized time-dependent density-functional theory, we first represent the dynamical polarizability of an interacting-electron system as an off-diagonal matrix element of the resolvent of the Liouvillian superoperator. One-electron operators and density matrices are treated using a representation borrowed from time-independent density-functional perturbation theory, which permits us to avoid the calculation of unoccupied Kohn–Sham orbitals. The resolvent of the Liouvillian is evaluated through a newly developed algorithm based on the nonsymmetric Lanczos method. Each step of the Lanczos recursion essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn–Sham Hamiltonian. Suitable extrapolation of the Lanczos coefficients allows for a dramatic reduction of the number of Lanczos steps necessary to obtain well converged spectra, bringing such number down to hundreds (or a few thousands, at worst) in typical plane-wave pseudopotential applications. The resulting numerical workload is only a few times larger than that needed by a ground-state Kohn–Sham calculation for a same system. Our method is demonstrated with the calculation of the spectra of benzene, fullerene, and of chlorophyll a.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/128/15/1.2899649.html;jsessionid=6rg9l6piwhu8.x-aip-live-06?itemId=/content/aip/journal/jcp/128/15/10.1063/1.2899649&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Turbo charging time-dependent density-functional theory with Lanczos chains
http://aip.metastore.ingenta.com/content/aip/journal/jcp/128/15/10.1063/1.2899649
10.1063/1.2899649
SEARCH_EXPAND_ITEM