Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/128/22/10.1063/1.2929850
1.
1.D. Herschbach, Eur. Phys. J. D 38, 3 (2006).
http://dx.doi.org/10.1140/epjd/e2006-00027-1
2.
2.B. Friedrich and D. R. Herschbach, Nature (London) 353, 412 (1991).
http://dx.doi.org/10.1038/353412a0
3.
3.H. J. Loesch and A. Remscheid, J. Chem. Phys. 93, 4779 (1990).
http://dx.doi.org/10.1063/1.458668
4.
4.B. Friedrich and D. Herschbach, Phys. Rev. Lett. 74, 4623 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4623
5.
5.B. Friedrich and D. Herschbach, J. Phys. Chem. 99, 15686 (1995).
http://dx.doi.org/10.1021/j100042a051
6.
6.H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003), and references cited therein.
http://dx.doi.org/10.1103/RevModPhys.75.543
7.
7.A. D. Bandrauk, Y. Fujimura, and R. J. Gordon, Laser Control and Manipulation of Molecules No. 821 (American Chemical Society, Washington, DC, 2002), and references cited therein.
8.
8.B. Friedrich and D. Herschbach, Chem. Phys. Lett. 262, 41 (1996).
http://dx.doi.org/10.1016/0009-2614(96)01034-2
9.
9.W. S. Kim and P. M. Felker, J. Chem. Phys. 107, 2193 (1997).
http://dx.doi.org/10.1063/1.474599
10.
10.J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, Phys. Rev. Lett. 85, 2470 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2470
11.
11.M. D. Poulsen, E. Peronne, H. Stapelfeldt, C. Z. Bisgaard, S. S. Viftrup, E. Hamilton, and T. Seideman, J. Chem. Phys. 121, 783 (2004).
http://dx.doi.org/10.1063/1.1760731
12.
12.B. S. Zhao, S. H. Lee, H. S. Chung, S. Hwang, W. K. Kang, and B. Friedrich, J. Chem. Phys. 119, 8905 (2003).
http://dx.doi.org/10.1063/1.1613934
13.
13.R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, Nat. Phys. 2, 465 (2006).
14.
14.R. Baumfalk, N. H. Nahler, and U. Buck, J. Chem. Phys. 114, 4755 (2001).
http://dx.doi.org/10.1063/1.1354144
15.
15.H. Nahler, R. Baumfalk, and U. Buck, J. Chem. Phys. 119, 224 (2003).
http://dx.doi.org/10.1063/1.1577311
16.
16.B. Friedrich, N. H. Nahler, and U. Buck, J. Mod. Opt. 50, 2677 (2003).
http://dx.doi.org/10.1080/09500340310001598138
17.
17.V. Poterya, O. Votava, M. Farnik, M. Oncak, P. Slavicek, U. Buck, and B. Friedrich, J. Chem. Phys. 128, 104313 (2008).
http://dx.doi.org/10.1063/1.2837656
18.
18.H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, and T. Suzuki, Phys. Rev. Lett. 90, 083001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.083001
19.
19.H. Tanji, S. Minemoto, and H. Sakai, Phys. Rev. A 72, 063401 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.063401
20.
20.B. Friedrich and D. Herschbach, J. Phys. Chem. A 103, 10280 (1999).
http://dx.doi.org/10.1021/jp992131w
21.
21.B. Friedrich and D. Herschbach, J. Chem. Phys. 111, 6157 (1999).
http://dx.doi.org/10.1063/1.479917
22.
22.W. Kim and P. Felker, J. Chem. Phys. 108, 6763 (1998).
http://dx.doi.org/10.1063/1.476092
23.
23.C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, Phys. Rev. A 59, 1382 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.1382
24.
24.N. E. Henriksen, Chem. Phys. Lett. 312, 196 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00977-X
25.
25.P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC, Ottawa, 1998).
26.
26.M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).
27.
27.L. Biedenharn and M. Rose, Rev. Mod. Phys. 25, 729 (1953).
http://dx.doi.org/10.1103/RevModPhys.25.729
28.
28.C. A. Arango, W. W. Kennerly, and G. S. Ezra, Chem. Phys. Lett. 392, 486 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.002
29.
29.I. N. Kozin and R. M. Roberts, J. Chem. Phys. 118, 10523 (2003).
http://dx.doi.org/10.1063/1.1573633
30.
30.D. A. Sadovskii and B. I. Zhilinskii, Mol. Phys. 104, 2595 (2006).
http://dx.doi.org/10.1080/00268970600673363
31.
31.C. A. Arango, W. W. Kennerly, and G. S. Ezra, J. Chem. Phys. 122, 184303 (2005).
http://dx.doi.org/10.1063/1.1888574
32.
32.W. Kennerly, Ph.D. thesis, Cornell University, 2005.
33.
33.S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, Phys. Rev. Lett. 93, 020406 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.020406
34.
34.U. Buck and M. Farnik, Int. Rev. Phys. Chem. 25, 583 (2006).
http://dx.doi.org/10.1080/01442350600847746
35.
35.J. M. Rost, J. C. Griffin, B. Friedrich, and D. R. Herschbach, Phys. Rev. Lett. 68, 1299 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1299
36.
36.M. Wu, R. J. Bemish, and R. E. Miller, J. Chem. Phys. 101, 9447 (1994).
http://dx.doi.org/10.1063/1.467976
37.
37.A. I. Maergoiz and J. Troe, J. Chem. Phys. 99, 3218 (1993).
http://dx.doi.org/10.1063/1.465130
38.
38.L. Pogliani, New J. Chem. 27, 919 (2003).
http://dx.doi.org/10.1039/b210474c
39.
39.CrossFire Beilstein database.
40.
40.B. Friedrich, A. Slenczka, and D. Herschbach, Can. J. Phys. 72, 897 (1994).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/128/22/10.1063/1.2929850
Loading
/content/aip/journal/jcp/128/22/10.1063/1.2929850
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/128/22/10.1063/1.2929850
2008-06-12
2016-04-29

Abstract

We show that combined electrostatic and radiative fields can greatly amplify the directional properties, such as axis orientation and alignment, of symmetric top molecules. In our computational study, we consider all four symmetry combinations of the prolate and oblate inertia and polarizabilitytensors, as well as the collinear and perpendicular (or tilted) geometries of the two fields. In, respectively, the collinear or perpendicular fields, the oblate or prolate polarizability interaction due to the radiative field forces the permanent dipole into alignment with the static field. Two mechanisms are found to be responsible for the amplification of the molecules’ orientation, which ensues once the static field is turned on: (a) permanent-dipole coupling of the opposite-parity tunneling doublets created by the oblate polarizability interaction in collinear static and radiative fields and (b) hybridization of the opposite parity states via the polarizability interaction and their coupling by the permanent dipole interaction to the collinear or perpendicular static field. In perpendicular fields, the oblate polarizability interaction, along with the loss of cylindrical symmetry, is found to preclude the wrong-way orientation, causing all states to become high-field seeking with respect to the static field. The adiabatic labels of the states in the tilted fields depend on the adiabatic path taken through the parameter space comprised of the permanent and induced-dipole interaction parameters and the tilt angle between the two field vectors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/128/22/1.2929850.html;jsessionid=by3vEyvObbDfm-zmX8XrRxQ1.x-aip-live-06?itemId=/content/aip/journal/jcp/128/22/10.1063/1.2929850&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd