1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Advances in mechanical detection of magnetic resonance
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/128/5/10.1063/1.2834737
1.
1.J. Sidles, Appl. Phys. Lett. 58, 2854 (1991).
http://dx.doi.org/10.1063/1.104757
2.
2.J. Sidles, Phys. Rev. Lett. 68, 1124 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1124
3.
3.J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, and C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.249
4.
4.See http://www.pdb.org for a database of known protein structures.
5.
5.See http://blanco.biomol.uci.edu for a database of known membrane protein structures.
6.
6.R. R. Ernst, B. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, New York, 1987).
7.
7.S. G. Zech, A. J. Wand, and A. E. McDermott, J. Am. Chem. Soc. 127, 8618 (2005).
http://dx.doi.org/10.1021/ja0503128
8.
8.D. Zhou, G. Shah, M. Cormos, C. Mullen, D. Sandoz, and C. Rienstra, J. Am. Chem. Soc. 129, 11791 (2007).
9.
9.B. Wylie, L. Sperling, H. Frericks, G. Shah, W. Franks, and C. Rienstra, J. Am. Chem. Soc. 129, 5318 (2007).
10.
10.N. A. Oyler and R. Tycko, J. Am. Chem. Soc. 126, 4478 (2004).
11.
11.A. M. Wolters, D. A. Jayawickrama, and J. V. Sweedler, Curr. Opin. Chem. Biol. 6, 711 (2002).
12.
12.D. L. Olson, T. L. Peck, A. G. Webb, R. L. Magin, and J. V. Sweedler, Science 270, 1967 (1995).
http://dx.doi.org/10.1126/science.270.5244.1967
13.
13.A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
14.
14.Y. Manassen, R. J. Hamers, J. E. Demuth, and A. J. Castallano, Phys. Rev. Lett. 62, 2531 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.2531
15.
15.Y. Manassen, I. Mukhopadhyay, and N. R. Rao, Phys. Rev. B 61, 16223 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.16223
16.
16.C. Durkan and M. E. Welland, Appl. Phys. Lett. 80, 458 (2002).
http://dx.doi.org/10.1063/1.1434301
17.
17.P. Messina, M. Mannini, A. Caneschi, D. Gatteschi, L. Sorace, P. Sigalotti, C. Sandrin, S. Prato, P. Pittana, and Y. Manassen, J. Appl. Phys. 101, 053916 (2007).
http://dx.doi.org/10.1063/1.2434832
18.
18.A. I. Ekimov and V. I. Safarov, Semicond. Sci. Technol. 15, 179 (1972).
19.
19.Optical Orientation, edited by F. Meier and P. Zacharchenya (Elsevier, Amsterdam, 1984).
20.
20.J. Köhler, J. A. J. M. Disselhorst, M. C. J. M. Donckers, E. J. J. Groenen, J. Schmidt, and W. E. Moerner, Nature (London) 363, 242 (1993).
http://dx.doi.org/10.1038/363242a0
21.
21.J. Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orrit, and R. Brown, Nature (London) 363, 244 (1993).
http://dx.doi.org/10.1038/363244a0
22.
22.J. Köhler, A. C. Brouwer, E. J. Groenen, and J. Schmidt, Science 268, 1457 (1995).
23.
23.J. A. Marohn, P. J. Carson, J. Y. Hwang, M. A. Miller, D. N. Shykind, and D. P. Weitekamp, Phys. Rev. Lett. 75, 1364 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1364
24.
24.R. Tycko and J. A. Reimer, J. Phys. Chem. 100, 13240 (1996).
http://dx.doi.org/10.1021/jp953667u
25.
25.A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, Science 276, 2012 (1997).
http://dx.doi.org/10.1126/science.276.5321.2012
26.
26.C. von Borczyskowski, J. Kohler, W. E. Moerner, M. Orrit, and J. Wrachtrup, Appl. Magn. Reson. 31, 665 (2007).
27.
27.F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 92, 076401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.076401
28.
28.F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.130501
29.
29.S. Schuler, T. Speck, C. Tietz, J. Wrachtrup, and U. Seifert, Phys. Rev. Lett. 94, 180602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.180602
30.
30.T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, Nat. Phys. 2, 408 (2006).
31.
31.C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, Phys. Rev. Lett. 97, 247401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.247401
32.
32.P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, Phys. Rev. Lett. 97, 083002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.083002
33.
33.C. Tietz, S. Schuler, T. Speck, U. Seifert, and J. Wrachtrup, Phys. Rev. Lett. 97, 050602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.050602
34.
34.C. I. Pakes, P. W. Josephs–Franks, R. P. Reed, S. G. Corner, and M. S. Colclough, IEEE Trans. Instrum. Meas. 50, 310 (2001).
http://dx.doi.org/10.1109/19.918129
35.
35.M. B. Ketchen, D. D. Awschalom, W. J. Gallagher, A. W. Kleinsasser, R. L. Sandstrom, J. R. Rozen, and B. Bumble, IEEE Trans. Magn. 25, 1212 (1989).
http://dx.doi.org/10.1109/20.92513
36.
36.D. Rugar, C. Yannoni, and J. A. Sidles, Nature (London) 360, 563 (1992).
http://dx.doi.org/10.1038/360563a0
37.
37.D. Rugar, O. Züger, S. Hoen, C. S. Yannoni, H. M. Vieth, and R. D. Kendrick, Science 264, 1560 (1994).
http://dx.doi.org/10.1126/science.264.5165.1560
38.
38.T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, and D. Rugar, Appl. Phys. Lett. 71, 288 (1997).
http://dx.doi.org/10.1063/1.119522
39.
39.P. Streckeisen, S. Rast, C. Wattinger, E. Meyer, P. Vettiger, C. Gerber, and H. J. Guntherodt, Appl. Phys. A: Mater. Sci. Process. A66, S341 (1998).
http://dx.doi.org/10.1007/s003390051159
40.
40.N. E. Jenkins, L. P. DeFlores, J. Allen, T. N. Ng, S. R. Garner, S. Kuehn, J. M. Dawlaty, and J. A. Marohn, J. Vac. Sci. Technol. B 22, 909 (2004).
http://dx.doi.org/10.1116/1.1695336
41.
41.M. D. Chabot, J. M. Moreland, L. Gao, S. H. Liou, and C. W. Miller, J. Microelectromech. Syst. 14, 1118 (2005).
http://dx.doi.org/10.1109/JMEMS.2005.851869
42.
42.D. W. Lee, J. H. Kang, U. Gysin, S. Rast, E. Meyer, M. Despont, and C. Gerber, J. Micromech. Microeng. 15, 2179 (2005).
http://dx.doi.org/10.1088/0960-1317/15/11/026
43.
43.S. Mouaziz, G. Boero, G. Moresi, C. Degen, Q. Lin, B. Meier, and J. Brugger, Microelectron. Eng. 83, 1306 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.218
44.
44.A. Schaff and W. S. Veeman, J. Magn. Reson. 126, 200 (1997).
http://dx.doi.org/10.1006/jmre.1997.1151
45.
45.N. Nestle, A. Schaff, and W. S. Veeman, Prog. Nucl. Magn. Reson. Spectrosc. 38, 1 (2001).
http://dx.doi.org/10.1016/S0079-6565(00)00026-1
46.
46.K. Wago, O. Zuger, R. Kendrick, C. S. Yannoni, and D. Rugar, J. Vac. Sci. Technol. B 14, 1197 (1996).
http://dx.doi.org/10.1116/1.588513
47.
47.O. Züger, S. T. Hoen, C. S. Yannoni, and D. Rugar, J. Appl. Phys. 79, 1881 (1996).
http://dx.doi.org/10.1063/1.361089
48.
48.K. Wago, D. Botkin, C. S. Yannoni, and D. Rugar, Appl. Phys. Lett. 72, 2757 (1998).
http://dx.doi.org/10.1063/1.121081
49.
49.K. J. Bruland, W. M. Dougherty, J. L. Garbini, J. A. Sidles, and S. H. Chao, Appl. Phys. Lett. 73, 3159 (1998).
http://dx.doi.org/10.1063/1.122705
50.
50.H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, Nat. Nanotechnol. 2, 301 (2007).
http://dx.doi.org/10.1038/nnano.2007.105
51.
51.K. J. Bruland, J. Krzystek, J. L. Garbini, and J. A. Sidles, Rev. Sci. Instrum. 66, 2853 (1995).
http://dx.doi.org/10.1063/1.1145567
52.
52.J. A. Marohn, R. Fainchtein, and D. D. Smith, J. Appl. Phys. 86, 4619 (1999).
http://dx.doi.org/10.1063/1.371412
53.
53.W. M. Dougherty, K. J. Bruland, J. L. Garbini, and J. A. Sidles, Meas. Sci. Technol. 7, 1733 (1996).
http://dx.doi.org/10.1088/0957-0233/7/12/007
54.
54.J. Mertz, O. Marti, and J. Mlynek, Appl. Phys. Lett. 62, 2344 (1993).
http://dx.doi.org/10.1063/1.109413
55.
55.J. L. Garbini, K. J. Bruland, W. M. Dougherty, and J. A. Sidles, J. Appl. Phys. 80, 1951 (1996).
http://dx.doi.org/10.1063/1.363085
56.
56.K. J. Bruland, J. L. Garbini, W. M. Dougherty, and J. A. Sidles, J. Appl. Phys. 80, 1959 (1996).
http://dx.doi.org/10.1063/1.363086
57.
57.K. J. Bruland, J. L. Garbini, W. M. Dougherty, and J. A. Sidles, J. Appl. Phys. 83, 3972 (1998).
http://dx.doi.org/10.1063/1.367152
58.
58.C. L. Degen, U. Meier, Q. Lin, A. Hunkeler, and B. H. Meier, Rev. Sci. Instrum. 77, 043707 (2006).
http://dx.doi.org/10.1063/1.2183221
59.
59.Y. Obukhov, K. C. Fong, D. Daughton, and P. C. Hammel, J. Appl. Phys. 101, 034315 (2007).
http://dx.doi.org/10.1063/1.2434955
60.
60.D. de Roover, L. M. Porter, A. Emami–Naeni, J. A. Marohn, S. Kuehn, S. Garner, and D. D. Smith, in Proceedings of the Tenth NSTI Nanotech Conference, Santa Clara, CA, USA, 2007 (unpublished).
61.
61.T. E. Kriewall, J. L. Garbini, J. A. Sidles, and J. P. Jacky, Trans. ASME, J. Dyn. Syst. Meas. 128, 577 (2006).
http://dx.doi.org/10.1115/1.2229258
62.
62.T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).
http://dx.doi.org/10.1063/1.347347
63.
63.Z. Zhang, P. C. Hammel, and G. J. Moore, Rev. Sci. Instrum. 67, 3307 (1996).
http://dx.doi.org/10.1063/1.1147412
64.
64.T. A. Barrett, C. R. Miers, H. A. Sommer, K. Mochizuki, and J. T. Markert, J. Appl. Phys. 83, 6235 (1998).
http://dx.doi.org/10.1063/1.367911
65.
65.D. D. Smith, J. A. Marohn, and L. E. Harrell, Rev. Sci. Instrum. 72, 2080 (2001).
http://dx.doi.org/10.1063/1.1357230
66.
66.W. M. Dougherty, K. J. Bruland, S. H. Chao, J. L. Garbini, S. E. Jensen, and J. A. Sidles, J. Magn. Reson. 143, 106 (2000).
http://dx.doi.org/10.1006/jmre.1999.1994
67.
67.R. Verhagen, C. W. Hilbers, A. P. M. Kentgens, L. Lenci, R. Groeneveld, A. Wittli, and H. van Kempen, Phys. Chem. Chem. Phys. 1, 4025 (1999).
http://dx.doi.org/10.1039/a904045e
68.
68.K. J. Bruland, J. L. Garbini, W. M. Dougherty, S. H. Chao, S. E. Jensen, and J. A. Sidles, Rev. Sci. Instrum. 70, 3542 (1999).
http://dx.doi.org/10.1063/1.1149947
69.
69.O. Züger and D. Rugar, Appl. Phys. Lett. 63, 2496 (1993).
http://dx.doi.org/10.1063/1.110460
70.
70.O. Züger and D. Rugar, J. Appl. Phys. 75, 6211 (1994).
http://dx.doi.org/10.1063/1.355403
71.
71.P. Hammel, Z. Zhang, G. J. Moore, and M. L. Roukes, J. Low Temp. Phys. 101, 59 (1995).
http://dx.doi.org/10.1007/BF00754562
72.
72.Z. Zhang, M. L. Roukes, and P. C. Hammel, J. Appl. Phys. 80, 6931 (1996).
http://dx.doi.org/10.1063/1.363767
73.
73.A. Suter, D. V. Pelekhov, M. L. Roukes, and P. C. Hammel, J. Magn. Reson. 154, 210 (2002).
http://dx.doi.org/10.1006/jmre.2001.2472
74.
74.S. Tsuji, T. Masumizu, and Y. Yoshinari, J. Magn. Reson. 167, 211 (2004).
http://dx.doi.org/10.1016/j.jmr.2003.12.011
75.
75.S. H. Chao, W. M. Dougherty, J. L. Garbini, and J. A. Sidles, Rev. Sci. Instrum. 75, 1175 (2004).
http://dx.doi.org/10.1063/1.1666983
76.
76.S. Tsuji, Y. Yoshinari, H. S. Park, and D. Shindo, J. Magn. Reson. 178, 325 (2006).
77.
77.S. H. Chao, J. L. Garbini, W. M. Dougherty, and J. A. Sidles, Rev. Sci. Instrum. 77, 063710 (2006).
http://dx.doi.org/10.1063/1.2210172
78.
78.K. R. Thurber, L. E. Harrell, and D. D. Smith, J. Magn. Reson. 162, 336 (2003).
http://dx.doi.org/10.1016/S1090-7807(03)00040-5
79.
79.K. W. Eberhardt, C. L. Degen, and B. H. Meier, Phys. Rev. B 76, 180405 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.180405
80.
80.M. Barbic, J. Appl. Phys. 91, 9987 (2002).
http://dx.doi.org/10.1063/1.1480466
81.
81.M. Barbic and A. Scherer, J. Appl. Phys. 92, 7345 (2002).
http://dx.doi.org/10.1063/1.1521795
82.
82.M. Barbic and A. Scherer, J. Appl. Phys. 95, 3598 (2004).
http://dx.doi.org/10.1063/1.1650889
83.
83.M. Barbic and A. Scherer, J. Magn. Reson. 181, 223 (2006).
84.
84.M. Barbic and A. Scherer, Nano Lett. 5, 787 (2005).
85.
85.P. Brunner and R. R. Ernst, J. Magn. Reson. (1969-1992) 33, 83 (1979).
http://dx.doi.org/10.1016/0022-2364(79)90192-6
86.
86.J. G. Kempf and J. A. Marohn, Phys. Rev. Lett. 90, 087601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.087601
87.
87.A. Kumar, D. Welti, and R. R. Ernst, J. Magn. Reson. (1969-1992) 18, 69 (1975).
http://dx.doi.org/10.1016/0022-2364(75)90224-3
88.
88.P. Mansfield and P. G. Morris, NMR Imaging in Biomedicine (Academic, New York, 1982).
89.
89.E. Kupce and R. Freeman, Concepts Magn. Reson., Part A 22, 4 (2004).
90.
90.E. Kupce and R. Freeman, J. Am. Chem. Soc. 126, 6429 (2004).
http://dx.doi.org/10.1021/ja049432q
91.
91.Z. Zhang, P. C. Hammel, and P. E. Wigen, Appl. Phys. Lett. 68, 2005 (1996).
http://dx.doi.org/10.1063/1.115619
92.
92.B. J. Suh, P. C. Hammel, Z. Zhang, M. M. Midzor, M. L. Roukes, and J. R. Childress, J. Vac. Sci. Technol. B 16, 2275 (1998).
http://dx.doi.org/10.1116/1.590161
93.
93.Z. Zhang, P. C. Hammel, M. Midzor, M. L. Roukes, and J. R. Childress, Appl. Phys. Lett. 73, 2036 (1998).
http://dx.doi.org/10.1063/1.122359
94.
94.V. Charbois, V. V. Naletov, J. Ben Youssef, and O. Klein, J. Appl. Phys. 91, 7337 (2002).
http://dx.doi.org/10.1063/1.1456040
95.
95.V. Charbois, V. V. Naletov, J. Ben Youssef, and O. Klein, Appl. Phys. Lett. 80, 4795 (2002).
http://dx.doi.org/10.1063/1.1489475
96.
96.V. V. Naletov, V. Charbois, O. Klein, and C. Fermon, Appl. Phys. Lett. 83, 3132 (2003).
http://dx.doi.org/10.1063/1.1614421
97.
97.O. Klein, V. Charbois, V. V. Naletov, and C. Fermon, Phys. Rev. B 67, 220407 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.220407
98.
98.O. Klein, V. Charbois, V. V. Naletov, and C. Fermon, J. Magn. Magn. Mater. 272, E1027 (2004).
99.
99.O. Klein and V. V. Naletov, C. R. Phys. 5, 325 (2004).
100.
100.G. de Loubens, V. V. Naletov, and O. Klein, Phys. Rev. B 71, 180411 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.180411
101.
101.T. Mewes, J. Kim, D. V. Pelekhov, G. N. Kakazei, P. E. Wigen, S. Batra, and P. C. Hammel, Phys. Rev. B 74, 144424 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.144424
102.
102.G. de Loubens, V. V. Naletov, O. Klein, J. Ben Youssef, F. Boust, and N. Vukadinovic, Phys. Rev. Lett. 98, 127601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.127601
103.
103.V. V. Naletov, G. de Loubens, V. Charbois, O. Klein, V. S. Tiberkevich, and A. N. Slavin, Phys. Rev. B 75, 140405 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.140405
104.
104.E. Nazaretski, I. Martin, R. Movshovich, D. V. Pelekhov, P. C. Hammel, M. Zalalutdinov, J. W. Baldwin, B. Houston, and T. Mewes, Appl. Phys. Lett. 90, 234105 (2007).
http://dx.doi.org/10.1063/1.2747171
105.
105.M. Löhndorf, J. Moreland, and P. Kabos, Appl. Phys. Lett. 76, 1176 (2000).
http://dx.doi.org/10.1063/1.125989
106.
106.R. Urban, A. Putilin, P. E. Wigen, S. H. Liou, M. C. Cross, P. C. Hammel, and M. L. Roukes, Phys. Rev. B 73, 212410 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.212410
107.
107.E. Nazaretski, J. D. Thompson, R. Movshovich, M. Zalalutdinov, J. W. Baldwin, B. Houston, T. Mewes, D. V. Pelekhov, P. Wigen, and P. C. Hammel, J. Appl. Phys. 101, 074905 (2007).
http://dx.doi.org/10.1063/1.2715761
108.
108.T. G. Ruskell, M. Löhndorf, and J. Moreland, J. Appl. Phys. 86, 664 (1999).
http://dx.doi.org/10.1063/1.370781
109.
109.A. Jander, J. Moreland, and P. Kabos, J. Appl. Phys. 89, 7086 (2001).
http://dx.doi.org/10.1063/1.1354583
110.
110.K. R. Thurber, L. E. Harrell, R. Fainchtein, and D. D. Smith, Appl. Phys. Lett. 80, 1794 (2002).
http://dx.doi.org/10.1063/1.1458688
111.
111.Y. J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, Phys. Rev. Lett. 97, 227602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.227602
112.
112.G. P. Berman, G. D. Doolen, P. C. Hammel, and V. I. Tsifrinovich, Phys. Rev. B 61, 14694 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14694
113.
113.G. P. Berman, G. D. Doolen, P. C. Hammel, and V. I. Tsifrinovich, Phys. Rev. Lett. 86, 2894 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2894
114.
114.G. P. Berman, F. Borgonovi, G. Chapline, P. C. Hammel, and V. I. Tsifrinovich, Phys. Rev. A 66, 032106 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.032106
115.
115.K. Wago, O. Zuger, J. Wegener, R. Kendrick, C. S. Yannoni, and D. Rugar, Rev. Sci. Instrum. 68, 1823 (1997).
http://dx.doi.org/10.1063/1.1147967
116.
116.K. Wago, D. Botkin, C. S. Yannoni, and D. Rugar, Phys. Rev. B 57, 1108 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1108
117.
117.R. Verhagen, A. Wittlin, C. W. Hilbers, H. van Kempen, and A. P. M. Kentgens, J. Am. Chem. Soc. 124, 1588 (2002).
http://dx.doi.org/10.1021/ja017693j
118.
118.C. L. Degen, Q. Lin, A. Hunkeler, U. Meier, M. Tomaselli, and B. H. Meier, Phys. Rev. Lett. 94, 207601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.207601
119.
119.C. L. Degen, Q. Lin, and B. H. Meier, Phys. Rev. B 74, 104414 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104414
120.
120.Q. Lin, C. L. Degen, M. Tomaselli, A. Hunkeler, U. Meier, and B. H. Meier, Phys. Rev. Lett. 96, 137604 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.137604
121.
121.K. W. Eberhardt, Q. Lin, U. Meier, A. Hunkeler, and B. H. Meier, Phys. Rev. B 75, 184430 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.184430
122.
122.G. M. Leskowitz, L. A. Madsen, and D. P. Weitekamp, Solid State Nucl. Magn. Reson. 11, 73 (1998).
http://dx.doi.org/10.1016/S0926-2040(97)00098-2
123.
123.L. A. Madsen, G. M. Leskowitz, and D. P. Weitekamp, Proc. Natl. Acad. Sci. U.S.A. 101, 12804 (2004).
http://dx.doi.org/10.1073/pnas.0405232101
124.
124.H. Bergh and E. W. McFarland, Meas. Sci. Technol. 7, 1019 (1996).
http://dx.doi.org/10.1088/0957-0233/7/7/004
125.
125.B. C. Stipe, H. J. Mamin, C. S. Yannoni, T. D. Stowe, T. W. Kenny, and D. Rugar, Phys. Rev. Lett. 87, 277602 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.277602
126.
126.R. Budakian, H. J. Mamin, and D. Rugar, Phys. Rev. Lett. 92, 037205 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.037205
127.
127.G. P. Berman, B. M. Chernobrod, V. N. Gorshkov, and V. I. Tsifrinovich, Phys. Rev. B 71, 184409 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184409
128.
128.K. W. Eberhardt, S. Mouaziz, G. Boero, J. Brugger, and B. H. Meier, Phys. Rev. Lett. 99, 227603 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.227603
129.
129.D. Weitekamp, U.S. Patent No. 6,841,995 (January 11, 2005).
130.
130.I. Bargatin and M. L. Roukes, Phys. Rev. Lett. 91, 138302 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.138302
131.
131.Z. Zhang and P. C. Hammel, IEEE Trans. Magn. 33, 4047 (1997).
http://dx.doi.org/10.1109/20.619658
132.
132.Z. Zhang and P. C. Hammel, Solid State Nucl. Magn. Reson. 11, 65 (1998).
http://dx.doi.org/10.1016/S0926-2040(97)00097-0
133.
133.J. A. Marohn, R. Fainchtein, and D. D. Smith, Appl. Phys. Lett. 73, 3778 (1998).
http://dx.doi.org/10.1063/1.122892
134.
134.B. C. Stipe, H. J. Mamin, T. D. Stowe, T. W. Kenny, and D. Rugar, Phys. Rev. Lett. 86, 2874 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2874
135.
135.C. W. Miller, U. M. Mirsaidov, T. C. Messina, Y. J. Lee, and J. T. Markert, J. Appl. Phys. 93, 6572 (2003).
http://dx.doi.org/10.1063/1.1557351
136.
136.T. N. Ng, N. E. Jenkins, and J. A. Marohn, IEEE Trans. Magn. 42, 378 (2006).
http://dx.doi.org/10.1109/TMAG.2006.870259
137.
137.J. D. Hannay, R. W. Chantrell, and D. Rugar, J. Appl. Phys. 87, 6827 (2000).
http://dx.doi.org/10.1063/1.372855
138.
138.D. Mozyrsky, I. Martin, D. Pelekhov, and P. C. Hammel, Appl. Phys. Lett. 82, 1278 (2003).
http://dx.doi.org/10.1063/1.1554769
139.
139.G. P. Berman, V. N. Gorshkov, D. Rugar, and V. I. Tsifrinovich, Phys. Rev. B 68, 094402 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.094402
140.
140.H. J. Mamin, R. Budakian, B. W. Chui, and D. Rugar, Phys. Rev. Lett. 91, 207604 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.207604
141.
141.G. P. Berman, V. N. Gorshkov, and V. I. Tsifrinovich, Phys. Rev. B 69, 212408 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.212408
142.
142.G. P. Berman, V. N. Gorshkov, and V. I. Tsifrinovich, Phys. Lett. A 318, 584 (2003).
http://dx.doi.org/10.1016/j.physleta.2003.09.055
143.
143.R. Budakian, H. J. Mamin, B. W. Chui, and D. Rugar, Science 307, 408 (2005).
http://dx.doi.org/10.1126/science.1106718
144.
144.H. J. Mamin, R. Budakian, B. W. Chui, and D. Rugar, Phys. Rev. B 72, 024413 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024413
145.
145.P. L. Carson, M. L., G. M. Leskowitz, and D. P. Weitekamp, Bull. Am. Phys. Soc. 44, 541 (1999).
146.
146.P. L. Carson, M. L., G. M. Leskowitz, and D. P. Weitekamp, U.S. Patent No. 6,081,119 (June 27, 2000).
147.
147.E. Kreyszig, Introductory Mathematical Statistics: Principles and Methods (Wiley, New York, 1970).
148.
148.C. L. Degen, M. Poggio, H. J. Mamin, and D. Rugar, “The role of spin noise in the detection of nanoscale ensembles of nuclear spins,” Phys. Rev. Lett. (in press).
149.
149.D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature (London) 430, 329 (2004).
http://dx.doi.org/10.1038/nature02658
150.
150.H. J. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358 (2001).
http://dx.doi.org/10.1063/1.1418256
151.
151.H. J. Mamin, R. Budakian, and D. Rugar, Rev. Sci. Instrum. 74, 2749 (2003).
http://dx.doi.org/10.1063/1.1564278
152.
152.G. P. Berman, D. I. Kamenev, and V. I. Tsifrinovich, Phys. Rev. A 66, 023405 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.023405
153.
153.G. P. Berman, F. Borgonovi, and V. I. Tsifrinovich, Phys. Rev. B 72, 224406 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.224406
154.
154.S. R. Garner, S. Kuehn, J. M. Dawlaty, N. E. Jenkins, and J. A. Marohn, Appl. Phys. Lett. 84, 5091 (2004).
http://dx.doi.org/10.1063/1.1762700
155.
155.W. Denk and D. Pohl, Appl. Phys. Lett. 59, 2171 (1991).
http://dx.doi.org/10.1063/1.106088
156.
156.B. C. Stipe, H. J. Mamin, T. D. Stowe, T. W. Kenny, and D. Rugar, Phys. Rev. Lett. 87, 096801 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.096801
157.
157.S. Kuehn, R. F. Loring, and J. A. Marohn, Phys. Rev. Lett. 96, 156103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.156103
158.
158.B. J. Persson and Z. Zhang, Phys. Rev. B 57, 7327 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.7327
159.
159.A. I. Volokitin and N. J. Persson, Phys. Rev. B 65, 115419 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.115419
160.
160.A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 68, 155420 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.155420
161.
161.V. Mkrtchian, V. A. Parsegian, R. Podgornik, and W. M. Saslow, Phys. Rev. Lett. 91, 220801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.220801
162.
162.J. R. Zurita–Sanchez, J. J. Greffet, and L. Novotny, Phys. Rev. A 69, 022902 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.022902
163.
163.A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 74, 205413 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205413
164.
164.A. I. Volokitin, B. N. J. Persson, and H. Ueba, Phys. Rev. B 73, 165423 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.165423
165.
165.A. I. Volokitin, B. N. J. Persson, and H. Ueba, J. Exp. Theor. Phys. 104, 96 (2007).
http://dx.doi.org/10.1134/S1063776107010116
166.
166.A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 91, 106101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.106101
167.
167.A. I. Volokitin and B. N. J. Persson, Phys. Rev. Lett. 94, 086104 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.086104
168.
168.S. Kuehn, J. A. Marohn, and R. F. Loring, J. Phys. Chem. B 110, 14525 (2006).
http://dx.doi.org/10.1021/jp061865n
169.
169.T. D. Stowe, T. W. Kenny, D. J. Thomson, and D. Rugar, Appl. Phys. Lett. 75, 2785 (1999).
http://dx.doi.org/10.1063/1.125149
170.
170.R. Budakian, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 89, 113113 (2006).
http://dx.doi.org/10.1063/1.2349311
171.
171.T. D. Stowe, Ph.D. thesis, Stanford University, 2000.
172.
172.M. Butler, R. Elgammal, V. A. Norton, and D. Weitekamp, Abstr. Pap. - Am. Chem. Soc. 227, U328 (2004).
173.
173.M. Butler, V. Norton, and D. Weitekamp, Abstr. Pap. - Am. Chem. Soc. 229, U735 (2005).
174.
174.E. A. Cornell, R. M. Weisskoff, K. R. Boyce, and D. E. Pritchard, Phys. Rev. A 41, 312 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.312
175.
175.M. Poggio, C. L. Degen, C. T. Rettner, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 90, 263111 (2007).
http://dx.doi.org/10.1063/1.2752536
176.
176.D. Rugar and P. Grütter, Phys. Rev. Lett. 67, 699 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.699
177.
177.M. Zalalutdinov, A. Olkhovets, A. Zehnder, B. Ilic, D. Czaplewski, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 78, 3142 (2001).
http://dx.doi.org/10.1063/1.1371248
178.
178.N. Tabuchi and H. Hatanaka, J. Magn. Reson. 148, 121 (2001).
179.
179.A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, Nature (London) 443, 193 (2006).
http://dx.doi.org/10.1038/nature05027
180.
180.M. Li, H. X. Tang, and M. L. Roukes, Nat. Nanotechnol. 2, 114 (2007).
http://dx.doi.org/10.1038/nnano.2006.208
181.
181.N. E. Flowers–Jacobs, D. R. Schmidt, and K. W. Lehnert, Phys. Rev. Lett. 98, 096804 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.096804
182.
182.V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature (London) 431, 1081 (2004).
http://dx.doi.org/10.1038/nature02921
183.
183.Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature (London) 435, 325 (2005).
http://dx.doi.org/10.1038/nature03569
184.
184.M. Hossein–Zadeh and K. J. Vahala, Opt. Express 15, 166 (2007).
http://dx.doi.org/10.1364/OE.15.000166
185.
185.K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, J. Microelectromech. Syst. 9, 117 (2000).
http://dx.doi.org/10.1109/84.825786
186.
186.J. L. Yang, T. Ono, and M. Esashi, J. Microelectromech. Syst. 11, 775 (2002).
http://dx.doi.org/10.1109/JMEMS.2002.805208
187.
187.D. F. Wang, T. Ono, and M. Esashi, Appl. Phys. Lett. 83, 3189 (2003).
http://dx.doi.org/10.1063/1.1616652
188.
188.U. Gysin, S. Rast, P. Ruff, E. Meyer, D. W. Lee, P. Vettiger, and C. Gerber, Phys. Rev. B 69, 045403 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045403
189.
189.A. B. Hutchinson, P. A. Truitt, K. C. Schwab, L. Sekaric, J. M. Parpia, H. G. Craighead, and J. E. Butler, Appl. Phys. Lett. 84, 972 (2004).
http://dx.doi.org/10.1063/1.1646213
190.
190.Y. Wang, J. A. Henry, D. Sengupta, and M. A. Hines, Appl. Phys. Lett. 85, 5736 (2004).
http://dx.doi.org/10.1063/1.1832735
191.
191.T. Ono and M. Esashi, Appl. Phys. Lett. 87, 044105 (2005).
http://dx.doi.org/10.1063/1.1993771
192.
192.G. Zolfagharkhani, A. Gaidarzhy, S. B. Shim, R. L. Badzey, and P. Mohanty, Phys. Rev. B 72, 224101 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.224101
193.
193.J. A. Henry, Y. Wang, D. Sengupta, and M. A. Hines, J. Phys. Chem. B 111, 88 (2007).
194.
194.B. Lee and R. E. Rudd, Phys. Rev. B 75, 195328 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195328
195.
195.S. Rast, U. Gysin, P. Ruff, C. Gerber, E. Meyer, and D. W. Lee, Nanotechnology 17, S189 (2006).
http://dx.doi.org/10.1088/0957-4484/17/7/S15
196.
196.S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, Nano Lett. 7, 1728 (2007).
http://dx.doi.org/10.1021/nl070716t
197.
197.A. L. Greer and E. Ma, MRS Bull. 32, 611 (2007).
198.
198.L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, Appl. Phys. Lett. 81, 4455 (2002).
http://dx.doi.org/10.1063/1.1526941
199.
199.V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature (London) 431, 284 (2004).
200.
200.C. S. Song, K. N. Hu, C. G. Joo, T. M. Swager, and R. G. Griffin, J. Am. Chem. Soc. 128, 11385 (2006).
http://dx.doi.org/10.1021/ja061284b
201.
201.P. A. S. Cruickshank and G. M. Smith, Rev. Sci. Instrum. 78, 015101 (2007).
http://dx.doi.org/10.1063/1.2424452
202.
202.G. P. Berman and V. I. Tsifrinovich, Phys. Rev. B 61, 3524 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.3524
203.
203.G. P. Berman, G. D. Doolen, P. C. Hammel, and V. I. Tsifrinovich, Phys. Rev. A 65, 032311 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.032311
204.
204.G. P. Berman, F. Borgonovi, G. Chapline, S. A. Gurvitz, P. C. Hammel, D. V. Pelekhov, A. Suter, and V. I. Tsifrinovich, J. Phys. A 36, 4417 (2003).
http://dx.doi.org/10.1088/0305-4470/36/15/314
205.
205.G. P. Berman, F. Borgonovi, G. V. Lopez, and V. I. Tsifrinovich, Phys. Rev. A 68, 012102 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.012102
206.
206.T. A. Brun and H. S. Goan, Phys. Rev. A 68, 032301 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.032301
207.
207.G. P. Berman, F. Borgonovi, and V. Tsifrinovich, Phys. Lett. A 331, 187 (2004).
208.
208.G. P. Berman, F. Borgonovi, and V. I. Tsifrinovich, Phys. Lett. A 337, 161 (2005).
209.
209.H. Gassmann, M. S. Choi, H. Yi, and C. Bruder, Phys. Rev. B 69, 115419 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115419
210.
210.S. Mancini, D. Vitali, and H. Moya–Cessa, Phys. Rev. B 71, 054406 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.054406
211.
211.T. A. Brun and H. S. Goan, Int. J. Quantum Inf. 3, 1 (2005).
212.
212.A. G. Redfield, Phys. Rev. 116, 315 (1959).
http://dx.doi.org/10.1103/PhysRev.116.315
213.
213.A. Z. Genack and A. G. Redfield, Phys. Rev. B 12, 78 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.78
http://aip.metastore.ingenta.com/content/aip/journal/jcp/128/5/10.1063/1.2834737
Loading
/content/aip/journal/jcp/128/5/10.1063/1.2834737
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/128/5/10.1063/1.2834737
2008-02-06
2014-08-20

Abstract

The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance(electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/128/5/1.2834737.html;jsessionid=jxq2qinrwb01.x-aip-live-03?itemId=/content/aip/journal/jcp/128/5/10.1063/1.2834737&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Advances in mechanical detection of magnetic resonance
http://aip.metastore.ingenta.com/content/aip/journal/jcp/128/5/10.1063/1.2834737
10.1063/1.2834737
SEARCH_EXPAND_ITEM