1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The AM05 density functional applied to solids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/128/8/10.1063/1.2835596
1.
1.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
2.
2.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1964).
http://dx.doi.org/10.1103/PhysRev.140.A1133
3.
3.R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085108
4.
4.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
5.
5.A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
6.
6.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
7.
7.B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
8.
8.J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
9.
9.C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
10.
10.J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán, J. Chem. Phys. 124, 154709 (2006);
http://dx.doi.org/10.1063/1.2187006
10.J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán, J. Chem. Phys.125, 249901 (2006).
http://dx.doi.org/10.1063/1.2403866
11.
11.G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993);
http://dx.doi.org/10.1103/PhysRevB.47.558
11.G. Kresse and J. Hafner, Phys. Rev. B49, 14251 (1994);
http://dx.doi.org/10.1103/PhysRevB.49.14251
11.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
12.
12.The calculations were made using version 5.1.38 of the VASP code.
13.
13.J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005).
http://dx.doi.org/10.1063/1.1926272
14.
14.P. J. Feibelman, Science 295, 5552 (2002).
http://dx.doi.org/10.1126/science.1066790
15.
15.D. Asthagiri, L. R. Pratt, and J. D. Kress, Phys. Rev. E 68, 041505 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.041505
16.
16.E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, J. Chem. Phys. 121, 5400 (2004).
http://dx.doi.org/10.1063/1.1782074
17.
17.J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, and M. Parrinello, J. Chem. Phys. 122, 014515 (2005).
http://dx.doi.org/10.1063/1.1828433
18.
18.H.-L. Sit and N. Marzari, J. Chem. Phys. 122, 204510 (2005).
http://dx.doi.org/10.1063/1.1908913
19.
19.H. S. Lee and M. Tuckerman, J. Chem. Phys. 125, 154507 (2006).
http://dx.doi.org/10.1063/1.2354158
20.
20.A. E. Mattsson and T. R. Mattsson (unpublished).
21.
21.A. E. Mattsson, P. A. Schultz, M. P. Desjarlais, T. R. Mattsson, and K. Leung, Modell. Simul. Mater. Sci. Eng. 13, R1 (2005).
http://dx.doi.org/10.1088/0965-0393/13/1/R01
22.
22.A. E. Mattsson, R. Armiento, P. A. Schultz, and T. R. Mattsson, Phys. Rev. B 73, 195123 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195123
23.
23.B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 127, 184104 (2007).
http://dx.doi.org/10.1063/1.2790009
24.
24.R. Armiento and A. E. Mattsson, Phys. Rev. B 66, 165117 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165117
25.
25.D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
26.
26.J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
27.
27.J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
28.
28.W. Kohn and A. E. Mattsson, Phys. Rev. Lett. 81, 3487 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3487
29.
29.A. E. Mattsson and W. Kohn, J. Chem. Phys. 115, 3441 (2001).
http://dx.doi.org/10.1063/1.1396649
30.
30.J. P. Perdew, J. Tao, and R. Armiento, Acta Phys. Chim. Debrecina 36, 25 (2003).
31.
31.N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.4555
32.
32.L. Vitos, B. Johansson, J. Kollár, and H. L. Skriver, Phys. Rev. B 62, 10046 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10046
33.
33.G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, Adv. Comput. Math. 5, 329 (1996).
http://dx.doi.org/10.1007/BF02124750
34.
34.Z. Yan, J. P. Perdew, and S. Kurth, Phys. Rev. B 61, 16430 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.16430
35.
35.Subroutines for AM05 are available from two of the authors (A.E.M. and R.A.).
36.
36.S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem. 75, 889 (1999).
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8
37.
37.Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006);
http://dx.doi.org/10.1103/PhysRevB.73.235116
37.F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B 75, 115131 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115131
38.
38.J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke (unpublished).
39.
39.J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003);
http://dx.doi.org/10.1103/PhysRevLett.91.146401
39.V. N. Staroverov, G. E. Scuseria, J. T. Tao, and J. P. Perdew, Phys. Rev. B 69, 075102 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.075102
40.
40.X.-Y. Pan, V. Sahni, and L. Massa, Int. J. Quantum Chem. 107, 816 (2006).
http://dx.doi.org/10.1002/qua.21177
41.
41.J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 024103 (2007).
http://dx.doi.org/10.1063/1.2747249
42.
42.Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
43.
43.L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997).
http://dx.doi.org/10.1063/1.473182
44.
44.A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
45.
45.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
46.
46.J. Harris and R. O. Jones, J. Phys. F: Met. Phys. 4, 1170 (1974).
http://dx.doi.org/10.1088/0305-4608/4/8/013
47.
47.O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.4274
48.
48.D. C. Langreth and J. P. Perdew, J. Phys. F: Met. Phys. 15, 2884 (1977).
49.
49.J. Harris, Phys. Rev. A 29, 1648 (1984).
http://dx.doi.org/10.1103/PhysRevA.29.1648
50.
50.M. Ernzerhof, Chem. Phys. Lett. 263, 499 (1996).
http://dx.doi.org/10.1016/S0009-2614(96)01225-0
51.
51.M. Ernzerhof, J. P. Perdew, and K. Burke, Int. J. Quantum Chem. 64, 285 (1996).
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:3<285::AID-QUA2>3.0.CO;2-S
52.
52.M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
http://dx.doi.org/10.1063/1.478401
53.
53.V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129 (2003).
http://dx.doi.org/10.1063/1.1626543
54.
54.J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).
http://dx.doi.org/10.1063/1.2085170
55.
55.A. V. Krukau and O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
56.
56.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994);
http://dx.doi.org/10.1103/PhysRevB.50.17953
56.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
57.
57.P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.16223
58.
58.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
59.
59.J. M. Wills, O. Eriksson, M. Alouani, and D. L. Price, Lect. Notes Phys. 535, 148 (2000);
59.AM05 is implemented in the version available at http://www.rspt.net
60.
60.F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
61.
61.J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
http://dx.doi.org/10.1063/1.1760074
62.
62.H. M. Tütüncü, S. Bağci, G. P. Srivastava, A. T. Albudak, and G. Uğur, Phys. Rev. B 71, 195309 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195309
63.
63.In practice, basis sets, points, pseudopotentials, and other numerical approximations come into play. There is, however, a fundamental difference between the two sources of errors: Shortcomings in the XC functional cannot be mitigated by improvements in the numerical precision.
64.
64.AM05 is implemented in the main version of VASP 5.1 and its use is invoked by setting in the INCAR file.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/128/8/10.1063/1.2835596
Loading
/content/aip/journal/jcp/128/8/10.1063/1.2835596
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/128/8/10.1063/1.2835596
2008-02-29
2014-11-27

Abstract

We show that the AM05 functional [Armiento and Mattsson, Phys. Rev. B72, 085108 (2005)] has the same excellent performance for solids as the hybrid density functionals tested in Paier et al. [J. Chem. Phys.124, 154709 (2006); 125, 249901 (2006)]. This confirms the original finding that AM05 performs exceptionally well for solids and surfaces. Hartree–Fock hybrid calculations are typically an order of magnitude slower than local or semilocal density functionals such as AM05, which is of a regular semilocal generalized gradient approximation form. The performance of AM05 is on average found to be superior to selecting the best of local density approximation and PBE for each solid. By comparing data from several different electronic-structure codes, we have determined that the numerical errors in this study are equal to or smaller than the corresponding experimental uncertainties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/128/8/1.2835596.html;jsessionid=7f7r43d5b7oh5.x-aip-live-02?itemId=/content/aip/journal/jcp/128/8/10.1063/1.2835596&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The AM05 density functional applied to solids
http://aip.metastore.ingenta.com/content/aip/journal/jcp/128/8/10.1063/1.2835596
10.1063/1.2835596
SEARCH_EXPAND_ITEM