1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Daubechies wavelets as a basis set for density functional pseudopotential calculations
Rent:
Rent this article for
USD
10.1063/1.2949547
/content/aip/journal/jcp/129/1/10.1063/1.2949547
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/1/10.1063/1.2949547

Figures

Image of FIG. 1.
FIG. 1.

Daubechies (Ref. 3) scaling function and wavelet of order 16. Both are different from zero only in the interval from to 8.

Image of FIG. 2.
FIG. 2.

A two-level adaptive grid around a molecule. The high resolution grid points carrying both scaling functions and wavelets are shown in blue (larger points); the low resolution grid points carrying only a single scaling function are shown in yellow (smaller points).

Image of FIG. 3.
FIG. 3.

Convergence rate of the wavelet code for a test run on a carbon atom. For this run the interpolation parameters are found to be within 2% accuracy: , , and . Using lower powers of for the fit does not give accurate agreement. Other test systems gave comparable convergence rates.

Image of FIG. 4.
FIG. 4.

The magic filter for the least asymmetric Daubechies-16 basis.

Image of FIG. 5.
FIG. 5.

The fine scale magic filter (combination of a wavelet transform and the magic filter in Fig. 4) for the least asymmetric Daubechies-16 basis, scaled by for comparison with the scaling function. The values of the filter on the graph are almost undistinguishable from the values of the scaling function. However, there is a slight difference that is important for the correct asymptotic convergence at small values of grid spacing .

Image of FIG. 6.
FIG. 6.

The fine scale magic filter (combination of a wavelet transform and the magic filter in Fig. 4) for the least asymmetric Daubechies-16 wavelet, scaled by for comparison with the wavelet itself.

Image of FIG. 7.
FIG. 7.

Zoom of the Daubechies (Ref. 3) scaling function near the border of its support. Both the function and its absolute value are plotted.

Image of FIG. 8.
FIG. 8.

Absolute convergence of the total energy of a methane molecule as a function of the low resolution localization radius with and without the tail corrections. The curves for two different values of the grid spacing are plotted, showing the convergence for the localization parameter sufficiently extended.

Image of FIG. 9.
FIG. 9.

Absolute precision (not precision per atom) as a function of the number of degrees of freedom for a cinchonidine molecule (44 atoms). Our method is compared with a plane wave code. In the case of the plane wave code, the plane wave cutoff and the volume of the computational box were chosen such as to obtain the required precision with the smallest number of degrees of freedom. In the case of our wavelet program, the grid spacing and the localization radii were optimized. For very high accuracies the exponential convergence rate of the plane waves beats the algebraic convergence rate of the wavelets. Such high accuracies are however not required in practice. Since convolutions can be executed at very high speed, the wavelet code is faster than the plane wave code at any accuracy even if the number of degrees of freedom are similar (see Table I).

Image of FIG. 10.
FIG. 10.

Efficiency of the parallel implementation of the code for several runs with different numbers of atoms. The number close to each point indicates the number of orbitals treated by each processor in the orbital distribution scheme.

Image of FIG. 11.
FIG. 11.

Relative importance of different code sections as a function of the number of atoms of a simple alkane chain, starting from single carbon atom. The calculation is performed in parallel such that each processor holds the same number of orbitals (two in this figure). Also the time in seconds for a single minimization iteration is indicated, showing the asymptotic cubic scaling of present implementation.

Tables

Generic image for table
Table I.

Computational time in seconds for a single minimization iteration for different runs of the cinchonidine molecule used for the plot in Fig. 9. The timings for different cutoff energies for the plane wave runs are shown. The input parameters for the wavelet runs are chosen such as to obtain the same absolute precision of the plane wave calculations. The plane wave runs are performed with the ABINIT code, which uses iterative diagonalization and with CPMD code (Ref. 35) in direct minimization. These timings are taken from a serial run on a 2.4 GHz AMD Opteron CPU.

Loading

Article metrics loading...

/content/aip/journal/jcp/129/1/10.1063/1.2949547
2008-07-07
2014-04-23
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Daubechies wavelets as a basis set for density functional pseudopotential calculations
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/1/10.1063/1.2949547
10.1063/1.2949547
SEARCH_EXPAND_ITEM