1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/129/12/10.1063/1.2980347
1.
1.A. E. Braun, Semicond. Int. 9, 58 (1999).
2.
2.P. S. Peercy, Nature (London) 406, 1023 (2000).
http://dx.doi.org/10.1038/35023223
3.
3.F. Zaera, Chem. Rec. 5, 133 (2005).
4.
4.A. O. Musa, T. Akomolafe, and M. J. Carter, Sol. Energy Mater. Sol. Cells 51, 305 (1998).
http://dx.doi.org/10.1016/S0927-0248(97)00233-X
5.
5.P. J. Sebastian, J. Quintana, F. Avila, and X. Mathew, Surf. Eng. 16, 47 (2000).
http://dx.doi.org/10.1179/026708400322911519
6.
6.W. Wang, O. K. Varghese, C. Ruan, M. Paulose, and C. A. Grimes, J. Mater. Res. 18, 2756 (2003).
7.
7.S. T. Shishiyanu, T. S. Shishiyanu, and O. I. Lupan, Sens. Actuators B 113, 468 (2006).
8.
8.P. Junell, M. Ahonen, M. Hirsimäki, and M. Valden, Surf. Rev. Lett. 11, 457 (2004).
http://dx.doi.org/10.1142/S0218625X0400627X
9.
9.T. Fujita, Y. Okawa, Y. Matsumoto, and K. Tanaka, Phys. Rev. B 54, 2167 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.2167
10.
10.F. Jensen, F. Besenbacher, E. Lægsgaard, and I. Stensgaard, Phys. Rev. B 42, 9206 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.9206
11.
11.F. Besenbacher, F. Jensen, E. Lægsgaard, K. Mortensen, and I. Stensgaard, J. Vac. Sci. Technol. B 9, 874 (1991).
http://dx.doi.org/10.1116/1.585486
12.
12.Ch. Wöll, R. J. Wilson, S. Chiang, H. C. Zeng, and K. A. R. Mitchell, Phys. Rev. B 42, 11926 (1990).
13.
13.F. M. Leibsle, Surf. Sci. 337, 51 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00519-6
14.
14.T. Fujita, Y. Okawa, and K. Tanaka, Appl. Surf. Sci. 130, 491 (1998).
http://dx.doi.org/10.1016/S0169-4332(98)00066-X
15.
15.K. Tanaka, T. Fujita, and Y. Okawa, Surf. Sci. 401, L407 (1998).
http://dx.doi.org/10.1016/S0039-6028(97)01011-X
16.
16.K. Tanaka, Y. Matsumoto, T. Fujita, and Y. Okawa, Appl. Surf. Sci. 130–132, 475 (1998).
17.
17.M. Yata and H. Rouch, Appl. Phys. Lett. 75, 1021 (1999).
http://dx.doi.org/10.1063/1.124585
18.
18.M. Yata and Y. Uesugi-Saitow, J. Chem. Phys. 116, 3075 (2002).
http://dx.doi.org/10.1063/1.1434951
19.
19.M. J. Harrison, D. P. Woodruff, S. D. Robinson, W. Pan, and J. Kirschner, Phys. Rev. B 74, 165402 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165402
20.
20.H. C. Zeng, R. A. McFarlane, and K. A. R. Mitchell, Surf. Sci. 208, L7 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90023-X
21.
21.C. Q. Sun, Vacuum 48, 525 (1997).
http://dx.doi.org/10.1016/S0042-207X(97)00017-1
22.
22.G. Meyer, H. Range, and J. P. Toennies, Surf. Sci. 371, 183 (1997).
http://dx.doi.org/10.1016/S0039-6028(96)01092-8
23.
23.M. Wuttig, R. Franchy, and H. Ibach, Surf. Sci. 213, 103 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90254-9
24.
24.P. Stefanov and Ts. Marinova, Appl. Surf. Sci. 31, 445 (1988).
http://dx.doi.org/10.1016/0169-4332(88)90006-2
25.
25.M. Okada, L. Vattuone, A. Gerbi, L. Savio, M. Rocca, K. Moritani, Y. Teraoka, and T. Kasai, J. Phys. Chem. C 111, 17340 (2007).
26.
26.M. Okada, L. Vattuone, K. Moritani, L. Savio, Y. Teraoka, T. Kasai, and M. Rocca, J. Phys.: Condens. Matter 19, 305022 (2007).
http://dx.doi.org/10.1088/0953-8984/19/30/305022
27.
27.M. Okada, K. Moritani, S. Goto, T. Kasai, A. Yoshigoe, and Y. Teraoka, J. Chem. Phys. 119, 6994 (2003).
http://dx.doi.org/10.1063/1.1615961
28.
28.M. Okada, L. Vattuone, K. Moritani, L. Savio, Y. Teraoka, T. Kasai, and M. Rocca, Phys. Rev. B 75, 233413 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.233413
29.
29.A. B. Gurevich, B. E. Bent, A. V. Teplyakov, and J. G. Chen, Surf. Sci. 442, L971 (1999).
30.
30.M. C. Asensio, M. J. Ashwin, A. L. D. Kilcoyne, D. P. Woodruff, A. W. Robinson, Th. Lindner, J. S. Somers, D. E. Ricken, and A. M. Bradshaw, Surf. Sci. 236, 1 (1990).
http://dx.doi.org/10.1016/0039-6028(90)90755-W
31.
31.D. Arvanitis, G. Comelli, T. Lederer, H. Rabus, and K. Baberschke, Chem. Phys. Lett. 211, 53 (1993).
32.
32.T. Lederer, D. Arvanitis, G. Comelli, L. Tröger, and K. Baberschke, Phys. Rev. B 48, 15390 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.15390
33.
33.T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, L. Tröger, K. Baberschke, and G. Comelli, Phys. Rev. B 48, 15405 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.15405
34.
34.I. K. Robinson, E. Vlieg, and S. Ferrer, Phys. Rev. B 42, 6954 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.6954
35.
35.J. A. Eastman, P. H. Fuoss, L. E. Rehn, P. M. Baldo, G.-W. Zhou, D. D. Fong, and L. Thompson, Appl. Phys. Lett. 87, 051914 (2005).
http://dx.doi.org/10.1063/1.2005396
36.
36.J. C. Yang, M. Yeadon, B. Kolasa, and J. M. Gibson, Appl. Phys. Lett. 70, 3522 (1997).
http://dx.doi.org/10.1063/1.119220
37.
37.J. C. Yang, B. Kolasa, J. M. Gibson, and M. Yeadon, Appl. Phys. Lett. 73, 2841 (1998).
http://dx.doi.org/10.1063/1.122608
38.
38.J. C. Yang, M. Yeadon, B. Kolasa, and J. M. Gibson, Scr. Mater. 38, 1237 (1998).
http://dx.doi.org/10.1016/S1359-6462(98)00026-8
39.
39.J. C. Yang, M. Yeadon, B. Kolasa, and J. M. Gibson, J. Electrochem. Soc. 146, 2103 (1999).
http://dx.doi.org/10.1149/1.1391898
40.
40.J. C. Yang, M. D. Bharadwaj, G. Zhou, and L. Tropia, Microsc. Microanal. 7, 486 (2001).
41.
41.J. C. Yang, D. Evan, and L. Tropia, Appl. Phys. Lett. 81, 241 (2002).
http://dx.doi.org/10.1063/1.1492007
42.
42.G. Zhou and J. C. Yang, Phys. Rev. Lett. 89, 106101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.106101
43.
43.G. Zhou and J. C. Yang, Appl. Surf. Sci. 210, 165 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00159-4
44.
44.G. Zhou and J. C. Yang, Mater. Sci. Forum 461–464, 183 (2004).
45.
45.G. Zhou and J. C. Yang, Phys. Rev. Lett. 93, 226101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.226101
46.
46.M. Honkanen, M. Vippola, and T. Lepistö, J. Mater. Sci. 42, 4684 (2007).
47.
47.M. Honkanen, M. Vippola, and T. Lepistö (unpublished).
48.
48.K. W. Jacobsen and J. K. Nørskov, Phys. Rev. Lett. 65, 1788 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1788
49.
49.S. Stolbov and T. S. Rahman, J. Chem. Phys. 117, 8523 (2002).
http://dx.doi.org/10.1063/1.1511727
50.
50.S. Stolbov and T. S. Rahman, Phys. Rev. Lett. 89, 116101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.116101
51.
51.M. Alatalo, S. Jaatinen, P. Salo, and K. Laasonen, Phys. Rev. B 70, 245417 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.245417
52.
52.T. Kangas, K. Laasonen, A. Puisto, H. Pitkänen, and M. Alatalo, Surf. Sci. 584, 62 (2005).
http://dx.doi.org/10.1016/j.susc.2005.02.061
53.
53.T. Kangas, N. Nivalainen, H. Pitkänen, A. Puisto, M. Alatalo, and K. Laasonen, Surf. Sci. 600, 4103 (2006).
54.
54.A. Puisto, H. Pitkänen, M. Alatalo, S. Jaatinen, P. Salo, A. S. Foster, T. Kangas, and K. Laasonen, Catal. Today 100, 403 (2005).
http://dx.doi.org/10.1016/j.cattod.2004.09.072
55.
55.S. Jaatinen, J. Blomqvist, P. Salo, A. Puisto, M. Alatalo, M. Hirsimäki, M. Ahonen, and M. Valden, Phys. Rev. B 75, 075402 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.075402
56.
56.S. Jaatinen, M. Rusanen, and P. Salo, Surf. Sci. 601, 1813 (2007).
http://dx.doi.org/10.1016/j.susc.2007.02.031
57.
57.I. Merrick, J. E. Inglesfield, and H. Ishida, Surf. Sci. 551, 158 (2004).
http://dx.doi.org/10.1016/j.susc.2004.01.030
58.
58.J. Hall, O. Saksager, and I. Chorkendorff, Chem. Phys. Lett. 216, 413 (1993).
http://dx.doi.org/10.1016/0009-2614(93)90119-L
59.
59.M. Ahonen, M. Hirsimäki, M. Puisto, S. Auvinen, M. Valden, and M. Alatalo, Chem. Phys. Lett. 456, 211 (2008).
60.
60.M. Lampimäki, K. Lahtonen, M. Hirsimäki, and M. Valden, J. Chem. Phys. 126, 034703 (2007).
http://dx.doi.org/10.1063/1.2424932
61.
61.K. Lahtonen, M. Lampimäki, P. Jussila, M. Hirsimäki, and M. Valden, Rev. Sci. Instrum. 77, 083901 (2006).
http://dx.doi.org/10.1063/1.2221539
62.
62.S. Tougaard, Surf. Interface Anal. 26, 249 (1998).
http://dx.doi.org/10.1002/(SICI)1096-9918(199804)26:4<249::AID-SIA368>3.0.CO;2-A
63.
63.S. Tougaard, J. Vac. Sci. Technol. A 14, 1415 (1996).
http://dx.doi.org/10.1116/1.579963
64.
64.L. Köver, S. Tougaard, J. Tóth, L. Daróczi, I. Szabó, G. Langer, and M. Menyhárd, Surf. Interface Anal. 31, 271 (2001).
http://dx.doi.org/10.1002/sia.988
65.
65.S. Tougaard, W. Hetterich, A. H. Nielsen, and H. S. Hansen, Vacuum 41, 1583 (1990).
66.
66.M. Hirsimäki, M. Lampimäki, K. Lahtonen, I. Chorkendorff, and M. Valden, Surf. Sci. 583, 157 (2005).
67.
67.M. Lampimäki, K. Lahtonen, M. Hirsimäki, and M. Valden, Surf. Interface Anal. 39, 359 (2007).
http://dx.doi.org/10.1002/sia.2540
68.
68.S. Tougaard, QUASES, Version 5.0 software for quantitative XPS/AES of surface nano-structures by analysis of the peak shape and background, University of Southern Denmark, Odense, Denmark, 2003 (http://www.quases.com).
69.
69.M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).
http://dx.doi.org/10.1002/sia.740010103
70.
70.K. Lahtonen, M. Hirsimäki, and M. Valden (unpublished).
71.
71.P. D. Kirsch and J. G. Ekerdt, J. Appl. Phys. 90, 4256 (2001).
http://dx.doi.org/10.1063/1.1403675
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/12/10.1063/1.2980347
Loading
/content/aip/journal/jcp/129/12/10.1063/1.2980347
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/129/12/10.1063/1.2980347
2008-09-24
2015-03-04

Abstract

Surface oxidation of Cu(100) has been investigated by variable temperature scanning tunneling microscopy and quantitative x-ray photoelectron spectroscopy as a function of pressure ( and ) at . Three distinct phases in the initial oxidation of Cu(100) have been observed: (1) the formation of the mixed oxygen chemisorption layer consisting of and domains, (2) the growth of well-ordered islands, and (3) the onset of subsurface oxide formation leading to the growth of disordered . We demonstrate that the reconstruction is relatively inert in the low pressure regime. The nucleation and growth of well-ordered two-dimensional Cu–O islands between two domains is revealed by time-resolved scanning tunneling microscopy experiments up to 0.5 ML of oxygen. The formation of these islands and their nanostructure appear to be critical to the onset of further migration of oxygen atoms deeper into copper and subsequent formation in the high pressure regime. The reactivity of each phase is correlated with the surface morphology and the role of the various island structures in the oxide growth is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/129/12/1.2980347.html;jsessionid=1dcmwybkk9gko.x-aip-live-06?itemId=/content/aip/journal/jcp/129/12/10.1063/1.2980347&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/12/10.1063/1.2980347
10.1063/1.2980347
SEARCH_EXPAND_ITEM