1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Single-chain dynamics in a homogeneous melt and a lamellar microphase: A comparison between Smart Monte Carlo dynamics, slithering-snake dynamics, and slip-link dynamics
Rent:
Rent this article for
USD
10.1063/1.2997345
/content/aip/journal/jcp/129/16/10.1063/1.2997345
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/16/10.1063/1.2997345

Figures

Image of FIG. 1.
FIG. 1.

Mean-square end-to-end distance, , in units of , and radius of gyration, , in units of as a function of time increment, , in Brownian dynamics simulations and SMC simulations. , , and . The data are compared to the exact result (horizontal line) obtained without quasi-instantaneous field approximation. The gray vertical lines indicate the time step used in the previous and present studies.

Image of FIG. 2.
FIG. 2.

(a) Mean-square center-of-mass displacement, , per SMC step as a function of the time increment for various chain discretizations, , 32, 64, and 128 as indicated in the key (at fixed polymer number density, ). The dashed line according to Eq. (9) depicts the Brownian dynamics behavior. The inset presents the acceptance ratio of SMC moves as a function of the time step for the smallest and the largest chain length investigated. The gray vertical lines indicate the time step used in the previous (Ref. 41) and present studies. (b) Ratio of the mean-square displacement of the chain ends, , and all segments, , vs time measured in units of . Lines show the results of the Rouse model according to Eq. (13) for . Symbols show results of the local, unconstraint dynamics. Different data sets correspond to SMC simulations with different values of as given in the key. The inset depicts as a function of . Lines correspond to the prediction of the Rouse model while symbols correspond to SMC simulations. The arrow marks the time scale .

Image of FIG. 3.
FIG. 3.

Sketch of the slip-link model for a diblock copolymer with chain discretization . Only one diblock copolymer out of 1444 is shown. The -block is depicted red, the -block is shown in yellow. slip links are attached to the backbone and they are represented by black lines. The anchor points, , are indicated blue caps of the black cylinders.

Image of FIG. 4.
FIG. 4.

Mean-square displacements of segments, , and mean-square displacements of the center of mass, , as a function of time in the homogeneous melt . Time is measured in units of the longest single-chain relaxation time, . The graph represents the data for local, unconstraint dynamics generated by SMC moves, slithering-snake, and slip-link dynamics. Data for local, unconstraint dynamics (lines) and slithering-snake dynamics (circles) are hardly distinguishable in this representation. The predictions of the Rouse model (Ref. 18) and the tube model (Ref. 17) are indicated by gray lines. The mean-square displacements, of segments exhibit a -behavior at short times and a diffusive behavior at long times. The data for the slip-link model show a sequence of power laws according to Eqs. (21) and (22). The -behavior of at intermediate times is indicated in the graph. The inset depicts the local, unconstraint dynamics for different chain discretizations, , at fixed . The left inset presents mean-square displacements of the local, unconstraint dynamics for different chain discretizations, , while the right inset presents the simulation data for the slithering-snake dynamics for .

Image of FIG. 5.
FIG. 5.

Comparison of the mean-square displacements in the simulations to the predictions of Rouse model (gray dashed lines) and tube model from Eqs. (21) and (22) depicted as blue solid lines. The mobility and the entanglement length are identified by matching the center-of-mass diffusion coefficient to the predictions. The symbols mark the simulation data at MCS. Arrows on top mark the entanglement time, , the Rouse time, , and the disengagement time, using the value extracted from the self-diffusion coefficients. The inset compares the mean-square displacements of our single-chain implementation of constraint release and the model by Likhtman (Ref. 57).

Image of FIG. 6.
FIG. 6.

Single-chain dynamic structure factor, , for (a) local, unconstraint dynamics, (b) slithering-snake dynamics, and (c) slip-link dynamics. In panel (a) the predictions of the Rouse model (25) are represented by solid lines and the simulation results by symbols. Dashed lines mark asymptotic predictions. The inset compares the measured single-chain structure factor, , for the wave vectors ,4,8,16, and 32 with the Debye function. In panels (b) and (c) the data are compared to Eqs. (26) and (27), respectively.

Image of FIG. 7.
FIG. 7.

Stress relaxation for local unconstraint, slithering-snake, and slip-link dynamics in a homogeneous melt . Circles indicate the times MCS for unconstraint dynamics. The gray line represents the stress relaxation in the unconstraint model [cf. Eq. (33)] with . The dashed line with slope marks a power-law decay according to the unconstraint model [see Eq. (32)]. The arrow on the right hand side indicates the prediction of the tube model for the plateau modulus, . The point is also marked by a cross. The inset displays the data for local unconstraint and slip-link dynamics as a function of time measured in units of MCS. Lines correspond to the stress calculated from the multichain system while symbols represent the data extracted from the single-chain stress, .

Image of FIG. 8.
FIG. 8.

Complex moduli, and , in the homogeneous melt as obtained for local unconstraint, slithering-snake, and slip-link dynamics. The gray lines correspond to the predictions of the Rouse model. The low-frequency power laws for the storage and loss moduli, and , are indicated by short solid lines. The error bar indicates the uncertainty of the slip-link data due to inaccuracy of at long times.

Image of FIG. 9.
FIG. 9.

Configuration snapshots of one chain in the lamellar phase at different times. (a) Local, unconstraint dynamics . (b) Slithering-snake dynamics . (c) Slip-link dynamics .

Image of FIG. 10.
FIG. 10.

Mean-square displacements of segments, , and mean-square displacements of the center of mass, , as a function of time in the lamellar phase for (a) local, unconstraint dynamics, (b) slithering-snake dynamics, and (c) slip-link dynamics. Parallel and perpendicular displacements are shown and the results of the disordered phase (, cf. Fig. 4) are depicted for comparison.

Image of FIG. 11.
FIG. 11.

Mean-square displacements of segments, and of the center of mass, , in a homogeneous melt as a function of chain discretization, , and polymer density, , for slip-link dynamics. The first data set corresponds to Fig. 4 with . The second data set employs the same chain discretization, , and number of slip links but the lower polymer density corresponds to . The third data set corresponds to but uses a larger chain discretization and a larger number of slip links . The insets present measured in units of . The relaxation times for the three systems, (), (), and () are , , and in units of , respectively.

Tables

Generic image for table
Table I.

Largest single-chain relaxation time, , calculated from the self-diffusion coefficient, , and normalized viscosity, calculated from the time integral of the stress relaxation function for the different single-chain dynamics. Entanglement time, , Rouse time, , and disengagement time, , are listed for the appropriate dynamics.

Loading

Article metrics loading...

/content/aip/journal/jcp/129/16/10.1063/1.2997345
2008-10-29
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Single-chain dynamics in a homogeneous melt and a lamellar microphase: A comparison between Smart Monte Carlo dynamics, slithering-snake dynamics, and slip-link dynamics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/16/10.1063/1.2997345
10.1063/1.2997345
SEARCH_EXPAND_ITEM