1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Pressure-energy correlations in liquids. I. Results from computer simulations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/129/18/10.1063/1.2982247
1.
1.L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I (Pergamon, London, 1980).
2.
2.J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic, New York, 1986).
3.
3.L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed. (Wiley, New York, 1998).
4.
4.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
5.
5.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008).
6.
6.If this seems unphysical, the argument could be given in terms of arbitrary deviations from equilibrium, . See, however, Paper II.
7.
7.J. E. Lennard-Jones, Proc. Phys. Soc. London 43, 461 (1931).
http://dx.doi.org/10.1088/0959-5309/43/5/301
8.
8.J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
9.
9.D. Ben-Amotz and G. Stell, J. Chem. Phys. 119, 10777 (2003).
http://dx.doi.org/10.1063/1.1620995
10.
10.U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
11.
11.D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 2nd ed. (Cambridge University Press, Cambridge, 2005).
12.
12.E. Zaccarelli, G. Foffi, K. A. Dawson, S. V. Buldyrev, F. Sciortino, and P. Tartaglia, Phys. Rev. E 66, 041402 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.041402
13.
13.H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys. Commun. 91, 43 (1995).
http://dx.doi.org/10.1016/0010-4655(95)00042-E
14.
14.E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001).
15.
15.Asap, Asap home page, see http://wiki.fysik.dtu.dk/asap for more information on MD codes.
16.
16.N. P. Bailey, T. Cretegny, J. P. Sethna, V. R. Coffman, A. J. Dolgert, C. R. Myers, J. Schiøtz, and J. J. Mortensen, e-print arXiv:cond-mat/0601236.
17.
17.K. W. Jacobsen, J. K. Nørskov, and M. J. Puska, Phys. Rev. B 35, 7423 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.7423
18.
18.K. W. Jacobsen, P. Stoltze, and J. K. Nørskov, Surf. Sci. 366, 394 (1996).
http://dx.doi.org/10.1016/0039-6028(96)00816-3
19.
19.U. R. Pedersen, T. Christensen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. E 77, 011201 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.011201
20.
20.M. Dzugutov, Phys. Rev. A 46, R2984 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.R2984
21.
21.W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1376
22.
22.W. R. P. Scott, P. H. Hunenberger, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E. Torda, T. Huber, P. Kruger, and W. van Gunsteren, J. Phys. Chem. A 103, 3596 (1999).
http://dx.doi.org/10.1021/jp984217f
23.
23.N. P. Bailey, J. Schiøtz, and K. W. Jacobsen, Phys. Rev. B 69, 144205 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.144205
24.
24.L. J. Lewis and G. Wahnström, Phys. Rev. E 50, 3865 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.3865
25.
25.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
26.
26.E. Zaccarelli, F. Sciortino, and P. Tartaglia, J. Phys.: Condens. Matter 16, 4849 (2004).
http://dx.doi.org/10.1088/0953-8984/16/42/004
27.
27.M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000).
http://dx.doi.org/10.1063/1.481505
28.
28.Choosing this measure of the slope is equivalent to diagonalizing the correlation matrix (the covariance matrix where the variables have been scaled to have unit variance) to identify the independently fluctuating variable. This is often done in multivariate analysis (see, e.g., Ref. 34), rather than diagonalizing the covariance matrix, when different variables have widely differing variances.
29.
29.F. Sciortino, Nature Mater. 1, 145 (2002).
http://dx.doi.org/10.1038/nmat752
30.
30.M. R. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.6443
31.
31.J. P. Hansen and I. R. McDonald, Liquid and Liquid Mixtures (Butterworths, London, 1969).
32.
32.W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger, A. E. Mark, W. R. P. Scott, and I. G. Tironi, Biomolecular Simulation: The GROMOS96 Manual and User Guide (Hochschul-Verlag AG an der ETH Zürich, Zürich, 1996).
33.
33.W. L. Jorgensen, J. D. Madura, and C. J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984).
http://dx.doi.org/10.1021/ja00334a030
34.
34.K. H. Esbensen, D. Guyot, F. Westad, and L. P. Houmøller, Multivariate Data Analysis—In Practice, 5th ed. (Camo, Oslo, 2002).
35.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/18/10.1063/1.2982247
Loading
/content/aip/journal/jcp/129/18/10.1063/1.2982247
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/129/18/10.1063/1.2982247
2008-11-14
2014-08-23

Abstract

We show that a number of model liquids at fixed volume exhibit strong correlations between equilibrium fluctuations of the configurational parts of (instantaneous) pressure and energy. We present detailed results for 13 systems, showing in which systems these correlations are significant. These include Lennard-Jones liquids (both single- and two-component) and several other simple liquids, neither hydrogen-bonding liquids such as methanol and water, nor the Dzugutov liquid, which has significant contributions to pressure at the second nearest neighbor distance. The pressure-energy correlations, which for the Lennard-Jones case are shown to also be present in the crystal and glass phases, reflect an effective inverse power-law potential dominating fluctuations, even at zero and slightly negative pressure. An exception to the inverse power-law explanation is a liquid with hard-sphere repulsion and a square-well attractive part, where a strong correlation is observed, but only after time averaging. The companion paper [N. P. Bailey et al., J. Chem. Phys.129, 184508 (2008)] gives a thorough analysis of the correlations, with a focus on the Lennard-Jones liquid, and a discussion of some experimental and theoretical consequences.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/129/18/1.2982247.html;jsessionid=9hjcm9so0091m.x-aip-live-06?itemId=/content/aip/journal/jcp/129/18/10.1063/1.2982247&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pressure-energy correlations in liquids. I. Results from computer simulations
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/18/10.1063/1.2982247
10.1063/1.2982247
SEARCH_EXPAND_ITEM