1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Pressure-energy correlations in liquids. II. Analysis and consequences
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/129/18/10.1063/1.2982249
1.
1.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
2.
2.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
3.
3.D. Ben-Amotz and G. Stell, J. Chem. Phys. 119, 10777 (2003).
http://dx.doi.org/10.1063/1.1620995
4.
4.U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
5.
5.K. Binder and W. Kob, Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (World Scientific, Singapore, 2005).
6.
6.The analysis of fluctuations in the liquid in Sec. II C can be applied to the case of a disordered solid, explaining the high correlation also there, but it is not accurate enough to get as good an estimate for the low-temperature limit as we do our analysis of the crystal.
7.
7.“Displacement” refers to the displacement of a given particle from its equilibrium position, while the “relative displacement” is the difference in this quantity for the given pair of particles.
8.
8.N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Rochester, 1976).
9.
9.This follows since if is an arbitrary vector and is the covariance matrix of a set of random variables, then is the variance of the random variable , and thus non-negative.
10.
10.K. H. Esbensen, D. Guyot, F. Westad, and L. P. Houmøller, Multivariate Data Analysis—In practice, 5th ed. (Camo, Oslo, 2002).
11.
11.The sums over the diagonal blocks are non-negative since is, and the sum over the first (last) components of is the dot product of the first (last) half of with itself, which is also non-negative.
12.
12.The configuration is analogous to the inherent state configuration often used to describe viscous liquid dynamics (Refs. 29 and 30), which is obtained by minimizing the potential energy starting from configuration .
13.
13.We have checked the statements that the zeroth and first moments of ρ(r) over the first peak are constant apart from contributions at the cutoff by computing orthogonalized versions of them (using Legendre polynomials defined on the interval from 0.8 σ to 1.4 σ) and showing that they are strongly correlated (correlation coefficient 0.9) with a slope corresponding to the cutoff itself.
14.
14.L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I (Pergamon Press, London, 1980).
15.
15.J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic, New York, 1986).
16.
16.L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed. (Wiley, New York, 1998).
17.
17.W. Kauzmann, Chem. Rev. (Washington, D.C.) 43, 219 (1948).
http://dx.doi.org/10.1021/cr60135a002
18.
18.S. Brawer, Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, 1985).
19.
19.C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
http://dx.doi.org/10.1063/1.1286035
20.
20.J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.953
21.
21.N. P. Bailey, T. Christensen, B. Jakobsen, K. Niss, N. B. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, J. Phys.: Condens. Matter 20, 244113 (2008).
http://dx.doi.org/10.1088/0953-8984/20/24/244113
22.
22.J. W. P. Schmelzer and I. Gutzow, J. Chem. Phys. 125, 184511 (2006).
http://dx.doi.org/10.1063/1.2374894
23.
23.N. L. Ellegaard, T. Christensen, P. V. Christiansen, N. B. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 126, 074502 (2007).
http://dx.doi.org/10.1063/1.2434963
24.
24.U. R. Pedersen, T. Christensen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. E 77, 011201 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.011201
25.
25.W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1376
26.
26.J. K. Nielsen and J. C. Dyre, Phys. Rev. B 54, 15754 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.15754
27.
27.S. Mossa, E. La Nave, F. Sciortino, and P. Tartaglia, Eur. Phys. J. B 30, 351 (2002).
http://dx.doi.org/10.1140/epjb/e2002-00389-0
28.
28.L. J. Lewis and G. Wahnström, Phys. Rev. E 50, 3865 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.3865
29.
29.M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
http://dx.doi.org/10.1063/1.1672587
30.
30.F. H. Stillinger, Science 267, 1935 (1995).
http://dx.doi.org/10.1126/science.267.5206.1935
31.
31.F. Sciortino, J. Stat. Mech.: Theory Exp. 2005, 35.
32.
32.A. Heuer, J. Phys.: Condens. Matter20, 373101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/37/373101
33.
33.E. La Nave, S. Mossa, and F. Sciortino, Phys. Rev. Lett. 88, 225701 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.225701
34.
34.N. Giovambattista, H. E. Stanley, and F. Sciortino, Phys. Rev. Lett. 91, 115504 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.115504
35.
35.T. Heimburg and A. D. Jackson, Proc. Natl. Acad. Sci. U.S.A. 102, 9790 (2005).
http://dx.doi.org/10.1073/pnas.0503823102
36.
36.T. Heimburg and A. D. Jackson, Biophys. J. 92, 3159 (2007).
http://dx.doi.org/10.1529/biophysj.106.099754
37.
37.H. Ebel, P. Grabitz, and T. Heimburg, J. Phys. Chem. B 105, 7353 (2001).
http://dx.doi.org/10.1021/jp010515s
38.
38.U. R. Pedersen, C. Leidy, P. Westh, and G. H. Peters, Biochim. Biophys. Acta 1758, 573 (2006).
39.
39.U. R. Pedersen, G. H. Peters, and P. Westh, Biophys. Chem. 125, 104 (2007).
http://dx.doi.org/10.1016/j.bpc.2006.07.005
40.
40.U. R. Pedersen, G. H. Peters, T. B. Schrøder, and J. C. Dyre, AIP Conf. Proc. 982, 407 (2008).
http://dx.doi.org/10.1063/1.2897829
41.
41.C. A. Angell, in Relaxations in Complex Systems, edited by K. L. Ngai and G. B. Wright (U.S. GPO, Washington, D.C., 1985), p. 3.
42.
42.A. Le Grand, C. Dreyfus, C. Bousquet, and R. M. Pick, Phys. Rev. E 75, 061203 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.061203
43.
43.D. Coslovich and C. M. Roland, J. Phys. Chem. B 112, 1329 (2008).
http://dx.doi.org/10.1021/jp710457e
44.
44.U. R. Pedersen, G. H. Peters, T. B. Schrøder, and J. C. Dyre (unpublished).
45.
45.E. W. Lemmon, M. O. McLinden, and D. G. Friend, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard (NIST, Gaithersburg, 2005), URL http://webbook.nist.gov.
46.
46.G. Tarjus, D. Kivelson, S. Mossa, and C. Alba-Simionesco, J. Chem. Phys. 120, 6135 (2004).
http://dx.doi.org/10.1063/1.1649732
47.
47.C. Dreyfus, A. L. Grand, J. Gapinski, W. Steffen, and A. Patkowski, Eur. Phys. J. B 42, 309 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00386-3
48.
48.R. Casalini and C. M. Roland, Phys. Rev. E 69, 062501 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.062501
49.
49.C. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R03
50.
50.T. B. Schrøder, U. R. Pedersen, and J. C. Dyre, e-print arXiv:0803.2199.
51.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/18/10.1063/1.2982249
Loading
/content/aip/journal/jcp/129/18/10.1063/1.2982249
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/129/18/10.1063/1.2982249
2008-11-14
2014-07-28

Abstract

We present a detailed analysis and discuss consequences of the strong correlations of the configurational parts of pressure and energy in their equilibrium fluctuations at fixed volume reported for simulations of several liquids in the previous paper [N. P. Bailey et al., J. Chem. Phys.129, 184507 (2008)]. The analysis concentrates specifically on the single-component Lennard-Jones system. We demonstrate that the potential may be replaced, at fixed volume, by an effective power law but not simply because only short-distance encounters dominate the fluctuations. Indeed, contributions to the fluctuations are associated with the whole first peak of the radial distribution function, as we demonstrate by an eigenvectoranalysis of the spatially resolved covariance matrix. The reason the effective power law works so well depends crucially on going beyond single-pair effects and on the constraint of fixed volume. In particular, a better approximation to the potential includes a linear term, which contributes to the mean values of potential energy and virial, but little to their fluctuations, for density fluctuations which conserve volume. We also study in detail the zero temperature limit of the (classical) crystalline phase, where the correlation coefficient becomes very close, but not equal, to unity, in more than one dimension; in one dimension the limiting value is exactly unity. In the second half of the paper we consider four consequences of strong pressure-energy correlations: (1) analyzing experimental data for supercritical argon we find 96% correlation; (2) we discuss the particular significance acquired by the correlations for viscous van der Waals liquids approaching the glass transition: For strongly correlating viscous liquids knowledge of just one of the eight frequency-dependent thermoviscoelastic response functions basically implies knowledge of them all; (3) we reinterpret aging simulations of ortho-terphenyl carried out by Mossa et al. [Eur. Phys. J. B30, 351 (2002)], showing their conclusions follow from the strongly correlating property; and (4) we briefly discuss the presence of the correlations (after appropriate time averaging) in model biomembranes, showing that significant correlations may be present even in quite complex systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/129/18/1.2982249.html;jsessionid=1gp0kejj6roh2.x-aip-live-06?itemId=/content/aip/journal/jcp/129/18/10.1063/1.2982249&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pressure-energy correlations in liquids. II. Analysis and consequences
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/18/10.1063/1.2982249
10.1063/1.2982249
SEARCH_EXPAND_ITEM