1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
A combined experimental/theoretical investigation of the near-infrared photodissociation of
Rent:
Rent this article for
USD
10.1063/1.3033746
/content/aip/journal/jcp/129/22/10.1063/1.3033746
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/22/10.1063/1.3033746

Figures

Image of FIG. 1.
FIG. 1.

Potential energy curves for the six lowest spin-orbit states of .

Image of FIG. 2.
FIG. 2.

Exemplar calculated minimum energy structures for , . The pattern of filling is first around the bond, next the Br end at , and then the I end at .

Image of FIG. 3.
FIG. 3.

Sequential binding energies for calculated minimum energy clusters of (squares), (circles), and (triangles).

Image of FIG. 4.
FIG. 4.

Average for 100 configurations of in the ground state at 60 K. Error bars represent one standard deviation of the mean.

Image of FIG. 5.
FIG. 5.

Calculated photoabsorption spectrum for .

Image of FIG. 6.
FIG. 6.

Near-IR (790 nm) branching ratios for . The theoretical simulated results (dashed line) are based on an “infinite” timescale. The experimental results (solid line) are from Sanford et al. (Ref. 19).

Image of FIG. 7.
FIG. 7.

Transient illustrating the absorption recovery of . The circles represent the experimental data, and the dotted line is the result of a single exponential fit. The black line is used to guide the eye.

Image of FIG. 8.
FIG. 8.

Absorption recovery transient for (dashed line and squares) and (solid line and circles). The lines are shown to guide the eye.

Image of FIG. 9.
FIG. 9.

Cartoon illustrating the origin of the overshoot of the asymptote for the absorption recovery of . The ground-state potential is a Morse potential obtained using the experimentally determined parameters for the equilibrium bond length and vibrational frequency (Refs. 52 and 53). The excited-state potential is also a model Morse potential with the well depth chosen to match the experimentally determined value (Ref. 54) and the equilibrium bond length adjusted to illustrate the origin of the overshoot. The arrow labeled represents the transition giving rise to the overshoot of the asymptote, and the arrow labeled represents the transition giving rise to the asymptotic signal. Note the break in the energy scale along the axis.

Image of FIG. 10.
FIG. 10.

Ground-state recombination dynamics for . The stepped line represents theoretical results, , and the dots represent experimental data, . The dotted and dashed-dotted-dashed lines represent single exponential fits to the experimental and simulated data, respectively, see Eq. (2).

Image of FIG. 11.
FIG. 11.

Comparison of experimental and theoretical ground-state recombination times. The solid line and diamonds represent the experimental data, and the dashed line and triangles represent the results of the theoretical calculations. The lines connecting the data points correspond to the fast component of the absorption recovery in cases where the recovery was best fit to a biexponential function. The data points not connected by a line correspond to the slow component of the absorption recovery.

Image of FIG. 12.
FIG. 12.

Visual representation of the solvent coordinate, , using clusters. is defined by the change in energy when the charge is transferred from the bromine atom to the iodine atom as shown on the left and right sides of the figure, respectively. A symmetric solvent configuration (top) corresponds to a small . An asymmetric solvent configuration (bottom) corresponds to large values of .

Image of FIG. 13.
FIG. 13.

Plot of solute internuclear distance vs solvent coordinate, , for a trapped trajectory for . The green line represents trajectory dynamics on the state shown in Fig. 1.

Image of FIG. 14.
FIG. 14.

Plot of solute internuclear distance vs solvent coordinate, , for a relaxed trajectory for . Black, red, and green represent trajectory dynamics on the , , and states, respectively, as seen in Fig. 1.

Image of FIG. 15.
FIG. 15.

Plot of solute internuclear distance vs solvent coordinate, , for 2 ns trajectories for that end with the product in the ground state. Black, red, and green represent trajectory dynamics on the , , and states, respectively, as seen in Fig. 1.

Image of FIG. 16.
FIG. 16.

Average solvent coordinate, , of the excited-state well in trajectory simulations. Error bars represent one standard deviation of the mean.

Image of FIG. 17.
FIG. 17.

Comparison of single and biexponential fits to the ground-state recombination trajectories of . The solid line represents the theoretical results. The dotted and dashed lines are single and biexponential fits, respectively. The corresponding constants are also labeled. The ensemble is composed of one hundred 3 ns trajectories.

Tables

Generic image for table
Table I.

Summary of energetics from ab initio calculations (energies in eV).

Generic image for table
Table II.

Properties of minimal energy clusters of from 80 K trajectory ensembles.

Loading

Article metrics loading...

/content/aip/journal/jcp/129/22/10.1063/1.3033746
2008-12-09
2014-04-17
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A combined experimental/theoretical investigation of the near-infrared photodissociation of IBr−(CO2)n
http://aip.metastore.ingenta.com/content/aip/journal/jcp/129/22/10.1063/1.3033746
10.1063/1.3033746
SEARCH_EXPAND_ITEM