banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy
Rent this article for


Image of FIG. 1.
FIG. 1.

(a) FTIR spectrum of the carbonyl stretching region of DMDC in cyclohexane. Three major peaks are seen, with shoulders on either side of the largest peak (labeled and ). (b) One- and two-quantum vibrational energy levels of the three main bands of DMDC labeled with the IR transition energies relative to the ground state in , highlighting the states involved in the excited state vibrational coherences. (c) Six representative double-sided Feynman diagrams corresponding to cross peaks which oscillate during the waiting time . The bottom three pathways involve coherence transfer (indicated by the dotted lines) during and (left) and during (right). (d) 2DIR pulse sequence indicating time and wave vector variables.

Image of FIG. 2.
FIG. 2.

An absolute value rephasing 2DIR spectrum of DMDC in cyclohexane at shows a large number of peaks, referenced throughout this article as indicated, and detailed in Table I. The FTIR (shown above the 2D spectrum) shows peaks in the same locations. The 2DIR is plotted with 60 evenly spaced contours ranging from 6% to 70% of the maximum intensity.

Image of FIG. 3.
FIG. 3.

A series of four 2DIR spectra of DMDC in cyclohexane, taken at different waiting times . Integrating the volume of the circled peak as a function of time delay shows oscillatory behavior caused by the waiting-time excited-state coherence. Oscillation arises because of the two Liouville paths contributing to that 2DIR peak; one involves a ground-state population during while the other contains a coherence between states and . The circled peak is peak 19, which oscillates at ( period).

Image of FIG. 4.
FIG. 4.

Peak volumes of the diagonal peaks (a) and the peaks directly beneath them (b) as a function of waiting time. The peaks with the lower value of correspond to paths which go through an overtone in the mode whose diagonal peak has the same value of . The largest peaks in each panel (peaks 13 and 9) have been scaled by a factor of 3 to show the relative intensities on the same plot. As tabulated in the supplemental information, biexponential fits to the decays show fast decay times ranging between 2.5 and for all peaks shown here (Ref. 39).

Image of FIG. 5.
FIG. 5.

Peak volumes and respective Fourier transform amplitudes of peaks 5 and 11 [(a) and (b)], 6 and 19 [(c) and (d)], and 15 and 21 [(e) and (f)] as a function of waiting time. Each pair oscillates at a frequency as shown in the absolute value of the Fourier transform of the time-domain volumes.

Image of FIG. 6.
FIG. 6.

Peak volumes and their respective Fourier transforms of some of the peaks accessing combination bands. Peak 3 (a) clearly oscillates at the same two frequencies [Fourier transform in (b)] seen in Fig. 4. Peaks 10 [(c) and (d)] and 2 [(d) and (e)], however, show at best only a single broad peak.

Image of FIG. 7.
FIG. 7.

Representative double-sided Feynman diagrams involving single (1CT) and double (2CT) coherence transfers. 1CT paths can lead to additional oscillations beyond what would be expected by neglecting coherence transfer. Paths leading to these oscillations give rise to peaks 3 (a), 10 (b), and 1 (c). While less likely than 1CT paths, 2CT paths contribute significantly to peak 3, as in (d) and (e), but much less to the other peaks.


Generic image for table
Table I.

Peaks present in the 2DIR spectrum of DMDC in cyclohexane. Transition dipoles listed reference the energy level diagram in Fig. 1(b); Liouville paths involving coherence transfer effects are neglected in the assignments.


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy