1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
A study of the ground and excited states of and . II. Computational analysis of the anion photoelectron spectrum and a reconsideration of the bond dissociation energy
Rent:
Rent this article for
USD
10.1063/1.3008056
/content/aip/journal/jcp/130/2/10.1063/1.3008056
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/2/10.1063/1.3008056

Figures

Image of FIG. 1.
FIG. 1.

Comparison of the observed photoelectron spectrum of anions prepared in the short liquid nitrogen cooled flow tube (solid line) with predicted spectra from PBE0 calculations (dashed lines and sticks) for (transition X), (transition Y), and (transition D). Franck–Condon factors are calculated by the SRC method. For each transition, the origin band position and intensity are chosen to match the observed spectrum. Assignments are given as , where for the symmetric stretch, for the bend, and for the asymmetric stretch, and and are the vibrational quantum numbers of mode in the initial and final states, respectively. For transition Y between states with equilibrium structures, the label also represents , and also represents and ; stick heights are summed for degenerate or nearly degenerate transitions. For overlapping transitions Y and D, which are expanded (four times) in the middle and upper spectra, the short dashed line shows the individual transitions (for Y in the middle and for D in the upper spectra) and the long dashed line (in the middle spectrum) shows their sum. Anion vibrational temperatures of are assumed and sticks are convoluted with Lorentzian line shapes with widths of 5, 10, and for transitions X, Y, and D, respectively, as in Paper I.

Image of FIG. 2.
FIG. 2.

Comparison of the observed spectra for anions prepared in the long liquid nitrogen cooled flow tube (solid line) with predicted spectra from PBE0 calculations (dashed lines and sticks) for transitions from the excited state of to the , , and states of for transitions A, B, and C, respectively. Notation as in Fig. 1; e.g., represents the transition from of to of in normal mode 2, the bend. Origin band positions and intensities are fit to the observed values. As in Paper I, the assumed vibrational temperatures are for the symmetric stretch and for the bend and asymmetric stretch , and transitions are convoluted with Lorentzian line shapes with widths of for A and B and for C. Top panel: Harmonic Franck–Condon factors calculated by the SRC method using displacements. Bottom panel: Harmonic Franck–Condon factors calculated in the parallel mode approximation using displacements for transitions A, B, and C (short dashed lines and sticks) or displacements for transition A (long dashed lines).

Image of FIG. 3.
FIG. 3.

As in Fig. 2, for transitions from the excited state of . Franck–Condon factors are calculated using the Duschinsky SRC method with displacements. For transition A, the intensity of the origin transition is 10% that in Fig. 2.

Image of FIG. 4.
FIG. 4.

Franck–Condon simulation of a transition from the ground state to a excited state, with parameters chosen to model the R2PI spectrum (Ref. 38). Frequencies are for the symmetric stretch and for the degenerate bend and asymmetric stretch in the ground state; for the excited state, and for and for and . As in Fig. 1, the label also represents the degenerate transition (and also represents ) and stick heights are summed for degenerate transitions. Franck–Condon factors are calculated for Morse potentials for (with ), and for harmonic potentials for and . A symmetric stretching displacement of and a ground state vibrational temperature of are assumed.

Image of FIG. 5.
FIG. 5.

(a) Square of the HOMO in the ground state showing contours in the molecular plane for isodensity values of 0.001, 0.002, 0.005, and . (b) Total electron density difference plot (anion minus neutral) for transition X (Sec. ???) between the and ground states, both calculated at the PBE0/MG3 level assuming the same geometry . Contours are shown in the molecular plane for the same isodensity magnitudes as in (a). Dark contours indicate decreased density in as compared with , and light contours show regions of increased density in . (c) As in (b), but showing (dark) and (light) isodensity surfaces with the molecule rotated by 45°.

Tables

Generic image for table
Table I.

Summary of the computational results for and states of and .

Generic image for table
Table II.

Comparison of computational to experimental results. [Experimental results (in italics) are from Paper 1 (Ref. 35, Table II) except as noted.]

Generic image for table
Table III.

Comparison of calculated to experimental normal mode displacements.

Generic image for table
Table IV.

Comparison of calculated to experimental dissociation energies (eV). Calculated total energies in hartrees at the CCSD(T)/CBS//PBE0/MG3 level. EA, IE, and dissociation energy values include PBE0/MG3 zero point energies (eV) of 0.0169 , 0.0204 , 0.0097 , 0.0530 , 0.0536 and 0.0353 . Experimental values show the uncertainty in the last digit(s) in parentheses.

Loading

Article metrics loading...

/content/aip/journal/jcp/130/2/10.1063/1.3008056
2009-01-12
2014-04-16
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A study of the ground and excited states of Al3 and Al3−. II. Computational analysis of the 488nm anion photoelectron spectrum and a reconsideration of the Al3 bond dissociation energy
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/2/10.1063/1.3008056
10.1063/1.3008056
SEARCH_EXPAND_ITEM