1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/130/20/10.1063/1.3135147
1.
1.J. O. M. Bockris and A. K. N. Reddy, Modern Electrochemistry 2A: Fundamentals of Electronics, 2nd ed. (Plenum, New York, 2001).
2.
2.Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
3.
3.Y. R. Shen, Nature (London) 337, 519 (1989).
http://dx.doi.org/10.1038/337519a0
4.
4.C. D. Bain, J. Chem. Soc., Faraday Trans. 91, 1281 (1995).
http://dx.doi.org/10.1039/ft9959101281
5.
5.C. Hirose, N. Akamatsu, and K. Domen, J. Chem. Phys. 96, 997 (1992).
http://dx.doi.org/10.1063/1.462120
6.
6.J. Holman, P. B. Davies, T. Nishida, S. Ye, and D. J. Neivandt, J. Phys. Chem. B 109, 18723 (2005).
http://dx.doi.org/10.1021/jp051564y
7.
7.R. Superfine, J. Y. Huang, and Y. R. Shen, Opt. Lett. 15, 1276 (1990).
http://dx.doi.org/10.1364/OL.15.001276
8.
8.V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, Chem. Phys. Lett. 386, 144 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.047
9.
9.N. Ji, V. Ostroverkhov, C. Y. Chen, and Y. R. Shen, J. Am. Chem. Soc. 129, 10056 (2007).
http://dx.doi.org/10.1021/ja071989t
10.
10.N. Ji, V. Ostroverkhov, C. S. Tian, and Y. R. Shen, Phys. Rev. Lett. 100, 096102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096102
11.
11.I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, J. Am. Chem. Soc. 130, 2271 (2008).
http://dx.doi.org/10.1021/ja076708w
12.
12.S. Yamaguchi and T. Tahara, J. Chem. Phys. 129, 101102 (2008).
http://dx.doi.org/10.1063/1.2981179
13.
13. in front of is needed to compensate the phase difference between surface and bulk SFG. See Ref. 12 for detail.
14.
14.In a strict sense, or is not constant but dependent on in the OH stretching region because of the vibrational resonance. According to the calculation of the complex Fresnel factor and reflectivity, the phase shifts due to and are , which is about the size of experimental uncertainty of the phase. Thus, we limit our discussion to a large phase shift . The present spectra were not normalized to the dependence of and .
15.
15.Q. Du, R. Superfine, E. Freysz, and Y. R. Shen, Phys. Rev. Lett. 70, 2313 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.2313
16.
16.W. F. Murphy and H. J. Bernstein, J. Phys. Chem. 76, 1147 (1972).
http://dx.doi.org/10.1021/j100652a010
17.
17.M. Sovago, R. K. Campen, G. W. H. Wurpel, M. Muller, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 101, 139402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.139402
18.
18.W. Gan, D. Wu, Z. Zhang, R. Feng, and H. Wang, J. Chem. Phys. 124, 114705 (2006).
http://dx.doi.org/10.1063/1.2179794
19.
19.J. C. Conboy, M. C. Messmer, and G. L. Richmond, J. Phys. Chem. B 101, 6724 (1997).
http://dx.doi.org/10.1021/jp971867v
20.
20.T. Kawai, H. Kamio, T. Kondo, and K. Kon-No, J. Phys. Chem. B 109, 4497 (2005).
http://dx.doi.org/10.1021/jp046858i
21.
21.D. E. Gragson, B. M. McCarty, and G. L. Richmond, J. Am. Chem. Soc. 119, 6144 (1997).
http://dx.doi.org/10.1021/ja962277y
22.
22.Q. Du, E. Freysz, and Y. R. Shen, Phys. Rev. Lett. 72, 238 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.238
23.
23.D. E. Gragson and G. L. Richmond, J. Phys. Chem. B 102, 3847 (1998).
http://dx.doi.org/10.1021/jp9806011
24.
24.M. S. Yeganeh, S. M. Dougal, and H. S. Pink, Phys. Rev. Lett. 83, 1179 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1179
25.
25.S. Ye, S. Nihonyanagi, and K. Uosaki, Phys. Chem. Chem. Phys. 3, 3463 (2001).
http://dx.doi.org/10.1039/b101673n
26.
26.A. Morita and J. T. Hynes, Chem. Phys. 258, 371 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00127-0
27.
27.X. Chen, T. Yang, S. Kataoka, and P. S. Cremer, J. Am. Chem. Soc. 129, 12272 (2007).
http://dx.doi.org/10.1021/ja073869r
28.
28.K. J. Schweighofer, X. Xia, and M. L. Berkowitz, Langmuir 12, 3747 (1996).
http://dx.doi.org/10.1021/la951061r
29.
29.The bulk concentration of the “free” counterion is for 10 mM CTAB due to the micellization. [T. Asakawa, H. Kitano, A. Ohta, and S. Miyagishi, J. Colloid Interface Sci. 242, 284 (2001).] The corresponding thickness of Gouy-Chapman layer is 6.9 nm.
http://dx.doi.org/10.1006/jcis.2001.7875
30.
30.C. Hirose, N. Akamatsu, and K. Domen, Appl. Spectrosc. 46, 1051 (1992).
http://dx.doi.org/10.1366/0003702924124385
31.
31.K. B. Wiberg and J. J. Wendoloski, J. Phys. Chem. 88, 586 (1984).
http://dx.doi.org/10.1021/j150647a051
32.
32.M. Oh-e, A. I. Lvovsky, X. Wei, and Y. R. Shen, J. Chem. Phys. 113, 8827 (2000);
http://dx.doi.org/10.1063/1.1318199
32.note that the sign of is opposite to ours in their paper because of the different sign of the denominator in Eq. (4).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/20/10.1063/1.3135147
Loading
/content/aip/journal/jcp/130/20/10.1063/1.3135147
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/130/20/10.1063/1.3135147
2009-05-26
2014-10-01

Abstract

Complex spectra of air/water interfaces in the presence of charged surfactants were measured by heterodyne-detected broadband vibrational sum frequency generation spectroscopy for the first time. In contrast to the neat watersurface, the signs of for two broad OH bands are the same in the presence of the charged surfactants. The obtained spectra clearly showed flip-flop of the interfacial water molecules which is induced by the opposite charge of the head group of the surfactants. With the sign of theoretically obtained, the absolute orientation, i.e., up/down orientation, of water molecules at the charged aqueous surfaces was uniquely determined by the relation between the sign of and the molecular orientation angle. Water molecules orient with their hydrogen up at the negatively charged aqueous interface whereas their oxygen up at the positively charged aqueous interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/130/20/1.3135147.html;jsessionid=1f04ny8etfy1n.x-aip-live-02?itemId=/content/aip/journal/jcp/130/20/10.1063/1.3135147&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/20/10.1063/1.3135147
10.1063/1.3135147
SEARCH_EXPAND_ITEM