1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Adiabatic ionization potential of acetic acid and torsional dynamics of its cation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/130/21/10.1063/1.3149802
1.
1.A. Brack, The Molecular Origins of Life (Cambridge University Press, Cambridge, England, 1998).
2.
2.E. M. S. Maçôas, L. Khriachtchev, M. Pettersson, R. Fausto, and M. Räsänen, J. Am. Chem. Soc. 125, 16188 (2003).
http://dx.doi.org/10.1021/ja038341a
3.
3.P. Zielke and M. A. Suhm, Phys. Chem. Chem. Phys. 9, 4528 (2007).
http://dx.doi.org/10.1039/b706094g
4.
4.Y. H. Yoon, M. L. Hause, A. S. Case, and F. F. Crim, J. Chem. Phys. 128, 084305 (2008).
http://dx.doi.org/10.1063/1.2828494
5.
5.Ö. Birer and M. Havenith, Annu. Rev. Phys. Chem. 60, 263 (2009).
http://dx.doi.org/10.1146/annurev.physchem.040808.090431
6.
6.P. Limão-Vieira, A. Giuliani, J. Delwiche, R. Parafita, R. Mota, D. Duflot, J. -P. Flament, E. Drage, P. Cahillane, N. J. Mason, S. V. Hoffman, and M. -J. Hubin-Franskin, Chem. Phys. 324, 339 (2006).
http://dx.doi.org/10.1016/j.chemphys.2005.10.032
7.
7.Y. J. Hu, H. B. Fu, and E. R. Bernstein, J. Chem. Phys. 125, 184308 (2006).
http://dx.doi.org/10.1063/1.2378626
8.
8.S. Leach, M. Schwell, H. -W. Jochims, and H. Baumgärtel, Chem. Phys. 321, 171 (2006).
http://dx.doi.org/10.1016/j.chemphys.2005.08.020
9.
9.L. Baptista, D. P. P. Andrade, A. B. Rocha, M. L. M. Rocco, H. M. Boechat-Roberty, E. F. da Silveira, E. C. da Silva, and G. Arbilla, J. Phys. Chem. A 112, 13382 (2008).
http://dx.doi.org/10.1021/jp807792s
10.
10.D. J. Knowles and A. J. C. Nicholson, J. Chem. Phys. 60, 1180 (1974).
http://dx.doi.org/10.1063/1.1681132
11.
11.K. Müller-Dethlefs, M. Sander, and E. W. Schlag, Chem. Phys. Lett. 112, 291 (1984).
http://dx.doi.org/10.1016/0009-2614(84)85743-7
12.
12.G. Reiser, W. Habenicht, and K. Müller-Dethlefs, J. Chem. Phys. 98, 8462 (1993).
http://dx.doi.org/10.1063/1.464505
13.
13.U. Hollenstein, F. Merkt, L. Meyer, R. Seiler, T. P. Softley, and S. Willitsch, Mol. Phys. 105, 1711 (2007).
http://dx.doi.org/10.1080/00268970701429889
14.
14.A. M. Schulenburg and F. Merkt, J. Chem. Phys. 130, 034308 (2009).
http://dx.doi.org/10.1063/1.3056385
15.
15.P. W. Forysinski, P. Zielke, D. Luckhaus, and R. Signorell (2009) (unpublished).
16.
16.D. Luckhaus, J. Chem. Phys. 113, 1329 (2000).
http://dx.doi.org/10.1063/1.481924
17.
17.D. Luckhaus, Phys. Chem. Chem. Phys. 10, 6215 (2008).
http://dx.doi.org/10.1039/b809361j
18.
18.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
19.
19.V. Ilyushin, I. Kleiner, and F. J. Lovas, J. Phys. Chem. Ref. Data 37, 97 (2008).
http://dx.doi.org/10.1063/1.2815328
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/21/10.1063/1.3149802
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Calculated potentials for the torsion of AA and AAC with corresponding energy levels (labels and , respectively, and tunneling symmetry labels in order of increasing energy).

Image of FIG. 2.

Click to view

FIG. 2.

(a) Calculated photoelectron spectrum of AA monomer at a temperature of 298 K and a resolution as reported in Ref. 6. (b) Experimental PFI-ZEKE photoelectron spectrum. (c) Calculated photoelectron spectrum at a vibrational temperature of 100 K.

Image of FIG. 3.

Click to view

FIG. 3.

Time of flight spectrum recorded at a laser photon energy of . The AAC monomer is labeled with an arrow. The spectrum is dominated by fragments of the dimer (Di), the trimer (Tr), the tetramer (Te), and the pentamer (Pe). Mass to charge ratio is given in .

Loading

Article metrics loading...

/content/aip/journal/jcp/130/21/10.1063/1.3149802
2009-06-01
2014-04-19

Abstract

Pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopy and supersonic cooling are used to investigate the torsional dynamics of the acetic acid cation and to determine an accurate value for the first adiabatic ionization potential of acetic acid, which has been the subject of debates for more than 40 yr. A doubling of the torsional barrier upon ionization is due to a significant shortening of the C–C bond and reduces the tunneling efficiency by an order of magnitude.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/130/21/1.3149802.html;jsessionid=vyp0mym0duv7.x-aip-live-02?itemId=/content/aip/journal/jcp/130/21/10.1063/1.3149802&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Adiabatic ionization potential of acetic acid and torsional dynamics of its cation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/21/10.1063/1.3149802
10.1063/1.3149802
SEARCH_EXPAND_ITEM