1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
On the phase diagram of water with density functional theory potentials: The melting temperature of ice with the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parr functionals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/130/22/10.1063/1.3153871
1.
1.P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature (London) 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
2.
2.C. A. Angell, Science 319, 582 (2008).
http://dx.doi.org/10.1126/science.1131939
3.
3.P. Ball, Nature (London) 452, 291 (2008).
http://dx.doi.org/10.1038/452291a
4.
4.M. Chaplin, Nat. Rev. Mol. Cell Biol. 7, 861 (2006).
http://dx.doi.org/10.1038/nrm2021
5.
5.P. Ball, Chem. Rev. (Washington, D.C.) 108, 74 (2008).
http://dx.doi.org/10.1021/cr068037a
6.
6.M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, Science 275, 817 (1997).
http://dx.doi.org/10.1126/science.275.5301.817
7.
7.D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, Nature (London) 397, 601 (1999).
http://dx.doi.org/10.1038/17579
8.
8.P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello, Science 291, 2121 (2001).
http://dx.doi.org/10.1126/science.1056991
9.
9.M. E. Tuckerman, D. Marx, and M. Parrinello, Nature (London) 417, 925 (2002).
http://dx.doi.org/10.1038/nature00797
10.
10.H. J. Bakker and H. K. Nienhuys, Science 297, 587 (2002).
http://dx.doi.org/10.1126/science.1073298
11.
11.M. Rini, B. Z. Magnes, E. Pines, and E. T. Nibbering, Science 301, 349 (2003).
http://dx.doi.org/10.1126/science.1085762
12.
12.O. F. Mohammed, D. Pines, J. Dreyer, E. Pines, and E. T. Nibbering, Science 310, 83 (2005).
http://dx.doi.org/10.1126/science.1117756
13.
13.D. Asthagiri, L. R. Pratt, and J. D. Kress, Phys. Rev. E 68, 041505 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.041505
14.
14.K. Laasonen, M. Sprik, and M. Parrinello, J. Chem. Phys. 99, 9080 (1993).
http://dx.doi.org/10.1063/1.465574
15.
15.M. Sprik, J. Hutter, and M. Parrinello, J. Chem. Phys. 105, 1142 (1996).
http://dx.doi.org/10.1063/1.471957
16.
16.J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli, J. Chem. Phys. 120, 300 (2004).
http://dx.doi.org/10.1063/1.1630560
17.
17.E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, J. Chem. Phys. 121, 5400 (2004).
http://dx.doi.org/10.1063/1.1782074
18.
18.M. J. McGrath, J. I. Siepmann, I. F. W. Kuo, C. J. Mundy, J. VandeVondele, F. Mohamed, and M. Krack, ChemPhysChem 6, 1894 (2005).
http://dx.doi.org/10.1002/cphc.200400580
19.
19.J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello, J. Chem. Phys. 122, 014515 (2005).
http://dx.doi.org/10.1063/1.1828433
20.
20.M. J. McGrath, J. I. Siepmann, I. F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hutter, F. Mohamed, and M. Krack, J. Phys. Chem. A 110, 640 (2006).
http://dx.doi.org/10.1021/jp0535947
21.
21.K. Leung and S. B. Rempe, Phys. Chem. Chem. Phys. 8, 2153 (2006).
http://dx.doi.org/10.1039/b515126k
22.
22.G. Hura, J. M. Sorenson, R. M. Glaeser, and T. Head-Gordon, J. Chem. Phys. 113, 9140 (2000).
http://dx.doi.org/10.1063/1.1319614
23.
23.J. M. Sorenson, G. Hura, R. M. Glaeser, and T. Head-Gordon, J. Chem. Phys. 113, 9149 (2000).
http://dx.doi.org/10.1063/1.1319615
24.
24.S. Sastry and A. C. Angell, Nature Mater. 2, 739 (2003).
http://dx.doi.org/10.1038/nmat994
25.
25.Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, and K. Funakoshi, Nature (London) 403, 170 (2000).
http://dx.doi.org/10.1038/35003143
26.
26.O. Mishima and H. E. Stanley, Nature (London) 396, 329 (1998).
http://dx.doi.org/10.1038/24540
27.
27.I. Brovchenko, A. Geiger, and A. Oleinikova, J. Chem. Phys. 123, 044515 (2005).
http://dx.doi.org/10.1063/1.1992481
28.
28.E. Schwegler, M. Sharma, F. Gygi, and G. Galli, Proc. Natl. Acad. Sci. U.S.A. 105, 14779 (2008).
http://dx.doi.org/10.1073/pnas.0808137105
29.
29.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
30.
30.A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
31.
31.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
32.
32.U. Landman, W. D. Luedtke, R. N. Barnett, C. L. Cleveland, M. W. Ribarsky, E. Arnold, S. Ramesh, H. Baumgart, A. Martinez, and B. Khan, Phys. Rev. Lett. 56, 155 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.155
33.
33.J. R. Morris, C. Z. Wang, K. M. Ho, and C. T. Chan, Phys. Rev. B 49, 3109 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.3109
34.
34.S. Yoo, X. C. Zeng, and J. R. Morris, J. Chem. Phys. 120, 1654 (2004).
http://dx.doi.org/10.1063/1.1633754
35.
35.J. Wang, S. Yoo, J. Bai, J. R. Morris, and X. C. Zeng, J. Chem. Phys. 123, 036101 (2005).
http://dx.doi.org/10.1063/1.1950647
36.
36.R. García Fernández, J. L. Abascal, and C. Vega, J. Chem. Phys. 124, 144506 (2006).
http://dx.doi.org/10.1063/1.2183308
37.
37.J. L. Abascal, R. G. Fernández, C. Vega, and M. A. Carignano, J. Chem. Phys. 125, 166101 (2006).
http://dx.doi.org/10.1063/1.2360276
38.
38.D. Frenkel and B. Smit, Understanding Molecular Simulation From Algorithms to Applications (Academic, San Diego, 2001).
39.
39.D. Alfè, Phys. Rev. B 68, 064423 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.064423
40.
40.D. Alfè, Phys. Rev. B 79, 060101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.060101
41.
41.S. Taioli, C. Cazorla, M. J. Gillan, and D. Alfè, Phys. Rev. B 75, 214103 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.214103
42.
42.D. Alfè, Phys. Rev. Lett. 94, 235701 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.235701
43.
43.J. A. Hayward and J. R. Reimers, J. Chem. Phys. 106, 1518 (1997).
http://dx.doi.org/10.1063/1.473300
44.
44.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
45.
45.J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Comput. Phys. Commun. 167, 103 (2005).
http://dx.doi.org/10.1016/j.cpc.2004.12.014
46.
46.S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.1703
47.
47.C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3641
48.
48.J. A. Poulsen, G. Nyman, and P. J. Rossky, Proc. Natl. Acad. Sci. U.S.A. 102, 6709 (2005).
http://dx.doi.org/10.1073/pnas.0408647102
49.
49.F. Paesani, S. Iuchi, and G. A. Voth, J. Chem. Phys. 127, 074506 (2007).
http://dx.doi.org/10.1063/1.2759484
50.
50.G. S. Fanourgakis, G. K. Schenter, and S. S. Xantheas, J. Chem. Phys. 125, 141102 (2006).
http://dx.doi.org/10.1063/1.2358137
51.
51.R. A. Kuharski and P. J. Rossky, J. Chem. Phys. 82, 5164 (1985).
http://dx.doi.org/10.1063/1.448641
52.
52.G. S. Fanourgakis and S. S. Xantheas, J. Phys. Chem. A 110, 4100 (2006);
http://dx.doi.org/10.1021/jp056477k
52.C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 5115 (2002).
http://dx.doi.org/10.1063/1.1447904
53.
53.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
54.
54.J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
55.
55.Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
http://dx.doi.org/10.1007/s00214-007-0310-x
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/22/10.1063/1.3153871
Loading
/content/aip/journal/jcp/130/22/10.1063/1.3153871
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/130/22/10.1063/1.3153871
2009-06-11
2014-09-23

Abstract

The melting temperature of ice was determined from constant enthalpy and pressure Born–Oppenheimer molecular dynamics simulations to be for the Perdew–Burke–Ernzerhof and for the Becke–Lee–Yang–Parr density functionals using a coexisting ice-liquid phase at constant pressures of and 10 000 bar and a density , respectively. This suggests that ambient condition simulations at will rather describe a supercooled state that is overstructured when compared to liquid water.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/130/22/1.3153871.html;jsessionid=1wi3t2bd3f9it.x-aip-live-06?itemId=/content/aip/journal/jcp/130/22/10.1063/1.3153871&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew–Burke–Ernzerhof and Becke–Lee–Yang–Parr functionals
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/22/10.1063/1.3153871
10.1063/1.3153871
SEARCH_EXPAND_ITEM