1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Auger recombination and excited state relaxation dynamics in anion clusters
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/130/23/10.1063/1.3149562
1.
1.W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).
http://dx.doi.org/10.1126/science.1069156
2.
2.V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Science 287, 1011 (2000).
http://dx.doi.org/10.1126/science.287.5455.1011
3.
3.R. D. Schaller, V. M. Agranovich, and V. I. Klimov, Nat. Phys. 1, 189 (2005).
http://dx.doi.org/10.1038/nphys151
4.
4.A. J. Nozik, Chem. Phys. Lett. 457, 3 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.03.094
5.
5.G. Nair, S. M. Geyer, L. Y. Chang, and M. G. Bawendi, Phys. Rev. B 78, 125325 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125325
6.
6.M. B. Ji, S. Park, S. T. Connor, T. Mokari, Y. Cui, and K. J. Gaffney, Nano Lett. 9, 1217 (2009).
http://dx.doi.org/10.1021/nl900103f
7.
7.A. L. Efros, V. A. Kharchenko, and M. Rosen, Solid State Commun. 93, 301 (1995).
http://dx.doi.org/10.1016/0038-1098(94)00780-2
8.
8.G. Nair and M. G. Bawendi, Phys. Rev. B 76, 081304 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.081304
9.
9.A. Pandey and P. Guyot-Sionnest, J. Chem. Phys. 127, 111104 (2007).
http://dx.doi.org/10.1063/1.2786068
10.
10.P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, J. Chem. Phys. 123, 074709 (2005).
http://dx.doi.org/10.1063/1.2004818
11.
11.A. Pandey and P. Guyot-Sionnest, Science 322, 929 (2008).
http://dx.doi.org/10.1126/science.1159832
12.
12.G. M. Pastor and K. H. Bennemann, in Clusters of Atoms and Molecules, edited by H. Haberland (Springer-Verlag, Berlin, 1994), p. 86.
13.
13.B. Issendorff and O. Cheshnovsky, Annu. Rev. Phys. Chem. 56, 549 (2005).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103845
14.
14.R. Busani, M. Folkers, and O. Cheshnovsky, Phys. Rev. Lett. 81, 3836 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3836
15.
15.R. Busani, R. Giniger, T. Hippler, and O. Cheshnovsky, Phys. Rev. Lett. 90, 083401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.083401
16.
16.A. Stolow, A. E. Bragg, and D. M. Neumark, Chem. Rev. (Washington, D.C.) 104, 1719 (2004).
http://dx.doi.org/10.1021/cr020683w
17.
17.G. B. Griffin, A. Kammrath, O. T. Ehrler, R. M. Young, O. Cheshnovsky, and D. M. Neumark, Chem. Phys. 350, 69 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.12.005
18.
18.A. V. Davis, R. Wester, A. E. Bragg, and D. M. Neumark, J. Chem. Phys. 118, 999 (2003).
http://dx.doi.org/10.1063/1.1536617
19.
19.A. E. Bragg, J. R. R. Verlet, A. Kammrath, O. Cheshnovsky, and D. M. Neumark, J. Chem. Phys. 122, 054314 (2005).
http://dx.doi.org/10.1063/1.1828042
20.
20.J. R. R. Verlet, A. E. Bragg, A. Kammrath, O. Cheshnovsky, and D. M. Neumark, J. Chem. Phys. 121, 10015 (2004).
http://dx.doi.org/10.1063/1.1809573
21.
21.W. C. Wiley and I. H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955).
http://dx.doi.org/10.1063/1.1715212
22.
22.A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
http://dx.doi.org/10.1063/1.1148310
23.
23.V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002).
http://dx.doi.org/10.1063/1.1482156
24.
24.U. Hefter, R. D. Mead, P. A. Schulz, and W. C. Lineberger, Phys. Rev. A 28, 1429 (1983).
http://dx.doi.org/10.1103/PhysRevA.28.1429
25.
25.H. Haberland, H. Kornmeier, H. Langosch, M. Oschwald, and G. Tanner, J. Chem. Soc., Faraday Trans. 86, 2473 (1990).
http://dx.doi.org/10.1039/ft9908602473
26.
26.M. E. Garcia, G. M. Pastor, and K. H. Bennemann, Phys. Rev. Lett. 67, 1142 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.1142
27.
27.H. Kitamura, Eur. Phys. J. D 43, 33 (2007).
http://dx.doi.org/10.1140/epjd/e2007-00069-9
28.
28.C. Brechignac, M. Broyer, P. Cahuzac, G. Delacretaz, P. Labastie, J. P. Wolf, and L. Woste, Phys. Rev. Lett. 60, 275 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.275
29.
29.S. Leutwyler and J. Bosiger, Chem. Rev. (Washington, D.C.) 90, 489 (1990).
http://dx.doi.org/10.1021/cr00101a004
30.
30.R. S. Berry, J. Chem. Phys. 45, 1228 (1966).
http://dx.doi.org/10.1063/1.1727742
31.
31.N. Gaston, P. Schwerdtfeger, and B. von Issendorff, Phys. Rev. A 74, 043203 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.043203
32.
32.Y. Wang, H. -J. Flad, and M. Dolg, Int. J. Mass Spectrom. 201, 197 (2000).
http://dx.doi.org/10.1016/S1387-3806(00)00157-3
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/23/10.1063/1.3149562
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Time-resolved photoelectron spectrum of pumped at 4.65 eV and probed at 1.55 eV, with time delay varying from −3.17 to . (b) Integrated photoelectron signal for each feature presented on a linear time scale and a false color intensity scale chosen to clearly display the observed dynamics. (c) Diagram of the photodetachment processes observed in this experiment. Solid red (blue) arrows correspond to probe (pump) photons, curved solid black arrows correspond to electron dynamics prior to detachment, and dotted black arrows correspond to recombination. White (black) circles correspond to holes (electrons).

Image of FIG. 2.

Click to view

FIG. 2.

Integrated intensity of features (a) E and (b) G for (black circles) and (red squares), normalized on a 0–1 scale. Fit lines for the data are displayed for both cluster sizes (black lines for and red lines for .)

Image of FIG. 3.

Click to view

FIG. 3.

Fitted time scales for recovery of Auger electron signal [feature E (black)] and pump-probe transient decay [feature G (red)]. Time scales are the mean of two to six separate experiments at each cluster size with the standard error for measurements at each cluster size displayed as error bars.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Qualitative diagram of relaxation pathways in electronically excited anions. Relaxation following intraband excitation (left) occurs by sequential radiationless transitions involving the conversion of electronic to vibrational energy. For interband excitation, inelastic electron-electron (right) and electron-hole (center) scattering enables relaxation via a small energy defect taken up by cluster vibrational modes. Note that energy levels are drawn closer together near the band gap for the and bands, consistent with our earlier pump-probe experiments (Ref. 19). (b) Schematic potential energy curves for (blue ground state, red excited state) and (black) plotted vs , the average nearest neighbor distance. Bond lengths in the neutral ground state should be slightly longer than in the anion (Ref. 32). The solid black arrow indicates nuclear motion on the anion excited state, while the dashed black arrow shows electron-hole recombination via Auger decay.

Loading

Article metrics loading...

/content/aip/journal/jcp/130/23/10.1063/1.3149562
2009-06-17
2014-04-16

Abstract

Using femtosecondtime-resolved photoelectron imaging, electron-hole pairs are created in size-selected anion clusters , and the subsequent decay dynamics are measured. These clusters eject electrons via Auger decay on time scales of 100–600 fs. There is an abrupt increase in the Auger decay time for clusters larger than , coinciding with the onset of the transition from van der Waals to covalent bonding in mercury clusters. Our results also show evidence for subpicosecond excited state relaxation attributed to inelastic electron-electron and electron-hole scattering as well as hole-induced contraction of the cluster.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/130/23/1.3149562.html;jsessionid=10i2s0rc9w5hy.x-aip-live-02?itemId=/content/aip/journal/jcp/130/23/10.1063/1.3149562&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Auger recombination and excited state relaxation dynamics in Hgn−(n=9–20) anion clusters
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/23/10.1063/1.3149562
10.1063/1.3149562
SEARCH_EXPAND_ITEM