1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Controlling molecular rotational population by wave-packet interference
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/130/23/10.1063/1.3155063
1.
1.K. Yamanouchi, Science 295, 1659 (2002).
http://dx.doi.org/10.1126/science.1068449
2.
2.P. B. Corkum, C. Ellert, M. Mehendale, P. Dietrich, S. Hankin, S. Aseyev, D. Rayner, and D. Villeneuve, Faraday Discuss. 113, 47 (1999).
http://dx.doi.org/10.1039/a903428e
3.
3.R. J. Levis, G. M. Menkir, and H. Rabitz, Science 292, 709 (2001).
http://dx.doi.org/10.1126/science.1059133
4.
4.C. Horn, M. Wollenhaupt, M. Krug, and T. Baumert, Phys. Rev. A 73, 031401(R) (2006).
http://dx.doi.org/10.1103/PhysRevA.73.031401
5.
5.E. Hertz, A. Rouzée, S. Guérin, B. Lavorel, and O. Faucher, Phys. Rev. A 75, 031403(R) (2007).
http://dx.doi.org/10.1103/PhysRevA.75.031403
6.
6.D. Pinkham, K. E. Mooney, and R. R. Jones, Phys. Rev. A 75, 013422 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.013422
7.
7.D. B. Strasfeld, S. -H. Shim, and M. T. Zanni, Phys. Rev. Lett. 99, 038102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.038102
8.
8.M. P. A. Branderhorst, P. Londero, P. Wasylczyk, C. Brif, R. L. Kosut, H. Rabitz, and I. A. Walmsley, Science 320, 638 (2008).
http://dx.doi.org/10.1126/science.1154576
9.
9.B. J. Sussman, D. Townsend, M. Y. Ivanov, and A. Stolow, Science 314, 278 (2006).
http://dx.doi.org/10.1126/science.1132289
10.
10.M. F. Kling, Ch. Siedschlag, A. J. Verhoef, J. I. Khan, M. Schultze, Th. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, and M. J. J. Vrakking, Science 312, 246 (2006).
http://dx.doi.org/10.1126/science.1126259
11.
11.X. M. Tong and C. D. Lin, Phys. Rev. Lett. 98, 123002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.123002
12.
12.P. Johnsson, J. Mauritsson, T. Remetter, A. L'Huillier, and K. F. SchaferPhys. Rev. Lett. 99, 233001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.233001
13.
13.K. Ohmori, Y. Sato, E. E. Nikitin, and S. A. Rice, Phys. Rev. Lett. 91, 243003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.243003
14.
14.K. Ohmori, H. Katsuki, H. Chiba, M. Honda, Y. Hagihara, K. Fujiwara, Y. Sato, and K. Ueda, Phys. Rev. Lett. 96, 093002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.093002
15.
15.H. Niikura, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. Lett. 92, 133002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.133002
16.
16.H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, Science 311, 1589 (2006).
http://dx.doi.org/10.1126/science.1121240
17.
17.H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.543
18.
18.T. Seideman and E. Hamilton, Adv. At., Mol., Opt. Phys. 52, 289 (2005).
19.
19.E. Hertz, O. Faucher, B. Lavorel, and R. Chaux, J. Chem. Phys. 113, 6132 (2000);
http://dx.doi.org/10.1063/1.1309526
19.E. Hertz, O. Faucher, B. Lavorel, and R. ChauxPhys. Rev. A 61, 033816 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.033816
20.
20.M. Renard, E. Hertz, B. Lavorel, and O. Faucher, Phys. Rev. A 69, 043401 (2004);
http://dx.doi.org/10.1103/PhysRevA.69.043401
20.M. Renard, E. Hertz, B. Lavorel, and O. Faucher, Phys. Rev. A72, 025401 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.025401
21.
21.R. de Nalda, C. Horn, M. Wollenhaupt, M. Krug, L. Banares, and T. Baumert, J. Raman Spectrosc. 38, 543 (2007).
http://dx.doi.org/10.1002/jrs.1677
22.
22.A. Rouzee, E. Hertz, B. Lavorel, and O. Faucher, J. Phys. B 41, 074002 (2008).
http://dx.doi.org/10.1088/0953-4075/41/7/074002
23.
23.M. Leibscher, I. S. Averbukh, and H. Rabitz, Phys. Rev. Lett. 90, 213001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.213001
24.
24.K. F. Lee, I. V. Litvinyuk, P. W. Dooley, M. Spanner, D. M. Villeneuve, and P. B. Corkum, J. Phys. B 37, L43 (2004).
http://dx.doi.org/10.1088/0953-4075/37/3/L02
25.
25.C. Z. Bisgaard, M. D. Poulsen, E. Peronne, S. S. Viftrup, and H. Stapelfeldt, Phys. Rev. Lett. 92, 173004 (2004);
http://dx.doi.org/10.1103/PhysRevLett.92.173004
25.C. Z. Bisgaard, M. D. Poulsen, E. Peronne, S. S. Viftrup, and H. Stapelfeldt, Phys. Rev. A 73, 053410 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.053410
26.
26.J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature (London) 432, 867 (2004).
http://dx.doi.org/10.1038/nature03183
27.
27.T. Kanai, S. Minemoto, and H. Sakai, Nature (London) 435, 470 (2005).
http://dx.doi.org/10.1038/nature03577
28.
28.S. S. Viftrup, V. Kumarappan, S. Trippel, and H. Stapelfeldt, Phys. Rev. Lett. 99, 143602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.143602
29.
29.S. Fleischer, I. S. Averbukh, and Y. Prior, Phys. Rev. Lett. 99, 093002 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.093002
30.
30.M. Spanner, E. A. Shapiro, and M. Ivanov, Phys. Rev. Lett. 92, 093001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.093001
31.
31.K. F. Lee, D. M. Villeneuve, P. B. Corkum, and E. A. Shapiro, Phys. Rev. Lett. 93, 233601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.233601
32.
32.A. S. Meijer, Y. Zhang, D. H. Parker, and W. J. van der Zande, Phys. Rev. A 76, 023411 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.023411
33.
33.K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998);
http://dx.doi.org/10.1103/RevModPhys.70.1003
33.N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.763
34.
34.A. S. Mouritzen and K. Molmer, J. Chem. Phys. 124, 244311 (2006).
http://dx.doi.org/10.1063/1.2208351
35.
35.T. P. Rakitzis, A. J. Van den Brom, and M. H. M. Janssen, Science 303, 1852 (2004).
http://dx.doi.org/10.1126/science.1094186
36.
36.H. Hasegawa and Y. Ohshima, Phys. Rev. A 74, 061401(R) (2006).
http://dx.doi.org/10.1103/PhysRevA.74.061401
37.
37.D. Pavicic, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, Phys. Rev. Lett. 98, 243001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.243001
38.
38.A. Rouzée, V. Boudon, B. Lavorel, O. Faucher, and W. Raballand, J. Chem. Phys. 123, 154309 (2005).
http://dx.doi.org/10.1063/1.2069866
39.
39.N. Xu, C. Wu, Y. Gao, H. Jiang, H. Yang, and Q. Gong, J. Phys. Chem. A 112, 612 (2008).
http://dx.doi.org/10.1021/jp075728h
40.
40.Y. Gao, C. Wu, N. Xu, G. Zeng, H. Yang, and Q. Gong, Phys. Rev. A 77, 043404 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.043404
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/23/10.1063/1.3155063
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Scheme for controlling molecular rotational excitation by wave-packet interference.

Image of FIG. 2.

Click to view

FIG. 2.

Population for the rotational wave packet of created by (a) one strong femtosecond laser pulse, (b) two strong femtosecond laser pulses with a time delay of 19.76 ps, and (c) two strong femtosecond laser pulses with a time delay of 21.56 ps. These time delays are chosen to suppress or enhance the population for the rotational state . The initial is populated in the lowest rotational state with and . The laser pulse has a central wavelength of 800 nm, a pulse duration of 110 fs, and an intensity of .

Image of FIG. 3.

Click to view

FIG. 3.

(a) Time-dependent alignment parameter and (b) angular distributions at different times between 35.53 and 43.78 ps [marked with asterisk in (a)] for the rotational wave packet with minimum population at the rotational state . (c) Time-dependent alignment parameter and (d) angular distributions at different times between 40.81 and 41.58 ps [marked with asterisk in (c)] for the rotational wave packet with maximum population at the rotational state .

Image of FIG. 4.

Click to view

FIG. 4.

Pure heterodyne alignment signal for at room temperature irradiated by (a) the first laser pulse alone, (b) the second laser pulse alone, and (c) both of the two laser pulses separated by .

Loading

Article metrics loading...

/content/aip/journal/jcp/130/23/10.1063/1.3155063
2009-06-16
2014-04-20

Abstract

We propose a control scheme for selecting populations of molecular rotational states by wave-packet interference. A series of coherent rotational wave packets is created by nonadiabatic rotational excitation of molecules using two strong femtosecond laser pulses. By adjusting the time delay between the two laser pulses, constructive or destructive interference among these wave packets enables the population to be enhanced or suppressed for a specific rotational state. The evolution of the rotational wave packet with selected populations produces interference patterns with controlled spatial symmetries. This method provides an approach to prepare a molecular ensemble with selected quantum-state distributions and controlled spatial distributions under field-free condition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/130/23/1.3155063.html;jsessionid=1sx3tyg2wm5j2.x-aip-live-02?itemId=/content/aip/journal/jcp/130/23/10.1063/1.3155063&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Controlling molecular rotational population by wave-packet interference
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/23/10.1063/1.3155063
10.1063/1.3155063
SEARCH_EXPAND_ITEM