1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Strong fields induce ultrafast rearrangement of H atoms in
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/130/23/10.1063/1.3157234
1.
1.K. Yamanouchi, S. L. Chin, P. Agostini, and G. Ferrante, Progress in Ultrafast Intense Laser Science (Springer, New York, 2007), Vol. 1–4.
2.
2.D. Mathur, F. A. Rajgara, A. K. Dharmadhikari, and J. A. Dharmadhikari, Phys. Rev. A 78, 023414 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.023414
3.
3.D. Mathur, A. K. Dharmadhikari, F. A. Rajgara, and J. A. Dharmadhikari, Phys. Rev. A 78, 013405 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.013405
4.
4.X. M. Tong, Z. X. Zhao, A. S. Alnaser, S. Voss, C. L. Cocke, and C. D. Lin, J. Phys. B 38, 333 (2005).
http://dx.doi.org/10.1088/0953-4075/38/4/002
5.
5.A. S. Alnaser, X. M. Tong, T. Osipov, S. Voss, C. M. Maharjan, P. Ranitovic, B. Ulrich, B. Shan, Z. Chang, C. D. Lin, and C. L. Cocke, Phys. Rev. Lett. 93, 183202 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.183202
6.
6.I. P. Christov, J. Zhou, J. Peatross, A. Rundquist, M. M. Murane, and H. C. Kapteyn, Phys. Rev. Lett. 77, 1743 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1743
7.
7.S. C. Rae and K. Burnett, Phys. Rev. A 48, 2490 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.2490
8.
8.T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.545
9.
9.C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couarion, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B: Lasers Opt. 79, 673 (2004).
http://dx.doi.org/10.1007/s00340-004-1650-z
10.
10.A. K. Dharmadhikari, J. A. Dharmadhikari, F. A. Rajgara, and D. Mathur, Opt. Express 16, 7083 (2008).
http://dx.doi.org/10.1364/OE.16.007083
11.
11.D. Mathur, Phys. Rep. 391, 1 (2004).
http://dx.doi.org/10.1016/j.physrep.2003.10.016
12.
12.A. Hiraya, K. Nobusada, M. Simon, K. Okada, T. Tokushima, Y. Senba, H. Yoshida, K. Kamimori, H. Okumura, Y. Shimizu, A.-L. Thomas, P. Millie, I. Koyano, and K. Ueda, Phys. Rev. A 63, 042705 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.042705
13.
13.G. R. Kumar, P. Gross, C. P. Safvan, F. A. Rajgara, and D. Mathur, Phys. Rev. A 53, 3098 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.3098
14.
14.V. R. Bhardwaj, C. P. Safvan, K. Vijayalakshmi, and D. Mathur, Phys. Rev. A 56, 2455 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.2455
15.
15.V. R. Bhardwaj, C. P. Safvan, K. Vijayalakshmi, and D. Mathur, J. Phys. B 30, 3821 (1997).
http://dx.doi.org/10.1088/0953-4075/30/17/012
16.
16.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/23/10.1063/1.3157234
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic representation of the experimental arrangement. Characterization of the ultrashort pulse used to irradiate the water molecules is also depicted in terms of SPIDER traces (see text).

Image of FIG. 2.

Click to view

FIG. 2.

(a) A typical mass spectrum obtained upon irradiation of water vapor by 9.3 fs pulses of peak intensity of . Note the absence of large-scale fragmentation and the almost total domination of molecular ionization. Insets show fragment ion yields at the 1%–10% levels obtained at double intensity. and fragments are shown at three different pressure values: black: ; red: ; blue: . The lowest-pressure spectrum has been vertically offset for clarity. (b) yield at an intensity of . Note the dependence of the signal on the direction of incident laser polarization.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Contour plot of the potential energy surface of in its lowest electronic state. Note the zone indicating a potential minimum when the O–H bond length is 1.15 a.u. and the H–O–H angle is 120°. (b) Cuts through the potential surface at H–O–H angles of 120° and 104° (the equilibrium angle for neutral in the ground electronic state) clearly illustrate the potential minimum.

Loading

Article metrics loading...

/content/aip/journal/jcp/130/23/10.1063/1.3157234
2009-06-17
2014-04-23

Abstract

H atoms in are rearranged by strong optical fields generated by intense 9.3 fs laser pulses to form . This atomic rearrangement is ultrafast: It occurs within a single laser pulse. Quantum-chemical calculations reveal that originates in the state of when the O–H bond elongates to 1.15 a.u. and the H–O–H angle becomes 120°. Bond formation on the ultrafast time scale of molecular vibrations (10 fs for ) and in strong fields has hitherto not been reported.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/130/23/1.3157234.html;jsessionid=1g393monrkwp9.x-aip-live-06?itemId=/content/aip/journal/jcp/130/23/10.1063/1.3157234&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Strong fields induce ultrafast rearrangement of H atoms in H2O
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/23/10.1063/1.3157234
10.1063/1.3157234
SEARCH_EXPAND_ITEM