1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Temperature dependence of reactions involving electron transfer in collisions
Rent:
Rent this article for
USD
10.1063/1.3158604
/content/aip/journal/jcp/130/24/10.1063/1.3158604
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/24/10.1063/1.3158604

Figures

Image of FIG. 1.
FIG. 1.

Schematic diagram of the apparatus.

Image of FIG. 2.
FIG. 2.

Arrival time distribution of negatively charged particles at the upper PSD following collisions at target temperatures of (a) 300, (b) 450, and (c) 550 K for a Rydberg atom velocity of . The data sets are normalized to equal Rydberg atom production rates and target gas densities. The inset shows the temperature dependence of the size of the feature normalized to that measured at low temperature.

Image of FIG. 3.
FIG. 3.

Time evolution of the population in the Penning trap following collisions at temperatures of (○) 300, (▲) 355, and (▼) 400 K. The data sets are normalized to the initial number of ions injected and the time axis is measured from the time of the laser pulse.

Image of FIG. 4.
FIG. 4.

Internal energy dependence of autodetachment lifetimes as predicted by QET (see text). The calculations assume a rate constant for electron capture of . The energies used for the vibrational modes of the parent neutral and anion are listed in Table I. The inset shows the change in the geometry from a planar point group to symmetry induced by electron attachment.

Image of FIG. 5.
FIG. 5.

(a) Temperature dependence of the signal produced in collisions for the values of and Rydberg atom velocities indicated. The various data sets are normalized to each other at 650 K. The data for are corrected for postattachment interactions (see text). (b) Arrhenius plot of the signal as a function of inverse temperature. The solid line is an exponential fit to the data. The inset shows the onset in the signal observed for collisions at a Rydberg atom velocity of and target temperature of 550 K. The dashed line indicates the build up of the signal predicted assuming immediate dissociation of the intermediates (see text).

Image of FIG. 6.
FIG. 6.

Model calculations of the Rydberg atom velocity dependence of the escape probabilities for (a) and (b) ion pairs produced in collisions for the values of and temperatures indicated.

Image of FIG. 7.
FIG. 7.

Arrival time distributions for negatively charged particles at the upper PSD following collisions for Rydberg atom velocities of (a) 680 and (b) and the target temperatures indicated. The data sets are normalized to equal Rydberg atom production rates and target gas densities.

Image of FIG. 8.
FIG. 8.

(a) Rydberg atom velocity dependence of the signal produced in room-temperature collisions normalized to equal initial Rydberg atom production rates. The lines show the calculated ion pair escape probabilities assuming the mean translational energy releases indicated. The experimental data are normalized to the calculations for . (b) Velocity dependence of the production of unbound ions (see text). The lines show the calculated escape probabilities for ion pairs obtained using an escape fraction and the mean internal-to-translational energy conversions indicated. The experimental data are normalized to the calculations for at the highest velocity (see text). (c) Velocity dependence of the ratio of the and signals together with that predicted using the same values of (with ) as in (b), and .

Image of FIG. 9.
FIG. 9.

Detail of the onset of the signal for the values of and Rydberg atom velocities indicated. The dashed line shows the build up of the signal expected assuming initial formation of unbound ion pairs.

Tables

Generic image for table
Table I.

Calculated frequencies for the vibrational modes of and along with measured values for the neutral. All modes are given in and have a degeneracy of one. The results of the ab initio (MP2, CCSD) calculations are scaled by 0.95, the DFT calculations by 0.98.

Loading

Article metrics loading...

/content/aip/journal/jcp/130/24/10.1063/1.3158604
2009-06-26
2014-04-21
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Temperature dependence of reactions involving electron transfer in K(np)/C2Cl4 collisions
http://aip.metastore.ingenta.com/content/aip/journal/jcp/130/24/10.1063/1.3158604
10.1063/1.3158604
SEARCH_EXPAND_ITEM