1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/1/10.1063/1.3148892
1.
1.L. Schlapbach and A. Züttel, Nature 414, 353 (2001).
http://dx.doi.org/10.1038/35104634
2.
2.D. Mosher, X. Tang, and S. Arsenault, DoE Hydrogen Program, FY 2006 Annual Progress Report, 2006, pp. 281284.
3.
3.See http://www1.eere.energy.gov/vehiclesandfuels/about/partnerships/freedomcar/fc_goals.html for FreedomCAR and Fuel Technical Partnership Technical Goals.
4.
4.S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, Chem. Rev. 107, 4111 (2007).
http://dx.doi.org/10.1021/cr0501846
5.
5.R. Z. Sørensen, J. S. Hummelshøj, A. Klerke, J. B. Reves, T. Vegge, J. K. Nørskov, and C. H. Christensen, J. Am. Chem. Soc. 130, 8660 (2008).
http://dx.doi.org/10.1021/ja076762c
6.
6.A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron, and C. Emmenegger, J. Alloys Compd. 356–357, 515 (2003).
http://dx.doi.org/10.1016/S0925-8388(02)01253-7
7.
7.Z. Łodziana and T. Vegge, Phys. Rev. Lett. 93, 145501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.145501
8.
8.Z. Łodziana and T. Vegge, Phys. Rev. Lett. 97, 119602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.119602
9.
9.K. Chłopek, C. Frommen, A. Léon, O. Zabara, and M. Fichtner, J. Mater. Chem. 17, 3496 (2007).
http://dx.doi.org/10.1039/b702723k
10.
10.H. Hagemann, M. Longhini, J. W. Kaminski, T. A. Wesolowski, R. Cerný, N. Penin, M. H. Sørby, B. C. Hauback, G. Severa, and C. M. Jensen, J. Phys. Chem. A 112, 7551 (2008).
http://dx.doi.org/10.1021/jp803201q
11.
11.S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. C 112, 5258 (2008).
http://dx.doi.org/10.1021/jp800630s
12.
12.V. Ozolins, E. H. Majzoub, and C. Wolverton, Phys. Rev. Lett. 100, 135501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.135501
13.
13.J. Voss, J. S. Hummelshøj, Z. Łodziana, and T. Vegge, J. Phys.: Condens. Matter 21, 012203 (2009).
http://dx.doi.org/10.1088/0953-8984/21/1/012203
14.
14.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
15.
15.B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
16.
16.D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
17.
17.S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002).
http://dx.doi.org/10.1109/5992.998641
18.
18.D. F. Shanno, Math. Comput. 24, 647 (1970).
http://dx.doi.org/10.2307/2004840
19.
19.F. Buchter, Z. Łodziana, A. Remhof, O. Friedrichs, A. Borgschulte, Ph. Mauron, A. Züttel, D. Sheptyakov, G. Barkhordarian, R. Bormann, K. Chłopek, M. Fichtner, M. Sørby, M. Riktor, B. Hauback, and S. Orimo, J. Phys. Chem. B 112, 8042 (2008).
http://dx.doi.org/10.1021/jp800435z
20.
20.See http://www.python.org for Python Programming Language.
21.
21.See http://subversion.tigris.org for Subversion version control system.
22.
22.See http://matplotlib.sourceforge.net for Matplotlib 2D plotting library for Python.
23.
23.J. -H. Her, M. Yousufuddin, W. Zhou, S. S. Jalisatgi, J. G. Kulleck, J. A. Zan, S. -J. Hwang, R. C. Bowman, Jr., and T. J. Udovic, Inorg. Chem. 47, 9757 (2008).
http://dx.doi.org/10.1021/ic801345h
24.
24.N. Hanada, K. Chłopek, C. Frommen, W. Lohstroh, and M. Fichtner, J. Mater. Chem. 18, 2611 (2008).
http://dx.doi.org/10.1039/b801049h
25.
25.H. -W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata, and A. Züttel, J. Alloys Compd. 446–447, 315 (2007).
http://dx.doi.org/10.1016/j.jallcom.2007.02.156
26.
26.E. Wiberg, Angew. Chem. 65, 16 (1953).
http://dx.doi.org/10.1002/ange.19530650104
27.
27.X. B. Yu, D. M. Grant, and G. S. Walker, Chem. Commun. (Cambridge) 37, 3906 (2006).
http://dx.doi.org/10.1039/b607869a
28.
28.S. -J. Hwang, R. C. Bowman, Jr., J. W. Reiter, J. Rijssenbeek, G. L. Soloveichik, J. -C. Zhao, H. Kabbour, and C. C. Ahn, J. Phys. Chem. C 112, 3164 (2008).
http://dx.doi.org/10.1021/jp710894t
29.
29.Y. Nakamori, H. -W. Li, M. Matsuo, K. Miwa, S. Towata, and S. Orimo, J. Phys. Chem. Solids 69, 2292 (2008).
http://dx.doi.org/10.1016/j.jpcs.2008.04.017
30.
30.Y. Nakamori and S. Orimo, in Solid-state Hydrogen Storage—Materials and Chemistry, edited by G. Walker (Woodhead, Cambridge, 2008), pp. 420449.
31.
31.P. Mauron, F. Buchter, O. Friedrichs, A. Remhof, M. Bielmann, C. N. Zwicky, and A. Züttel, J. Phys. Chem. B 112, 906 (2008).
http://dx.doi.org/10.1021/jp077572r
32.
32.L. Seballos, J. Z. Zhang, E. Ronnebro, J. L. Herberg, and E. H. Majzoub, J. Alloys Compd. 476, 446 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.09.038
33.
33.E. A. Nickels, M. O. Jones, W. I. F. David, S. R. Johnson, R. L. Lowton, M. Sommariva, and P. P. Edwards, Angew. Chem., Int. Ed. 47, 2817 (2008).
http://dx.doi.org/10.1002/anie.200704949
34.
34.See http://www.docstoc.com/docs/922287/Fundamental-Studies-of-Advanced-High-Capacity-Reversible-Metal-Hydrides for “Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides,” presentation by C. M. Jensen, DOE Hydrogen Program, 13 May 2007.
35.
35.F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sørensen, C. H. Christensen, and J. K. Nørskov, Science 320, 1320 (2008).
http://dx.doi.org/10.1126/science.1156660
36.
36.Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. Towata, A. Züttel, and S. Orimo, Phys. Rev. B 74, 045126 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045126
37.
37.H. Nöth and P. Fritz, Angew. Chem. 73, 408 (1961).
http://dx.doi.org/10.1002/ange.19610731112
38.
38.See http://www.hydrogen.energy.gov/pdfs/review08/st_0_satyapal.pdf for “Hydrogen Storage,” presentation by S. Satyapal, 2008 DOE Hydrogen Program, Merit Review and Peer Evaluation Meeting, 9 June 2008.
39.
39.H. Nöth, E. Wiberg, and L. Winter, Z. Anorg. Allg. Chem. 386, 73 (1971).
http://dx.doi.org/10.1002/zaac.19713860109
40.
40.V. Ozolins, E. H. Majzoub, and C. Wolverton, J. Am. Chem. Soc. 131, 230 (2009).
http://dx.doi.org/10.1021/ja8066429
41.
41.See EPAPS Document No. E-JCPSA6-130-043923 for a listing of the authors' affiliations. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/1/10.1063/1.3148892
Loading
/content/aip/journal/jcp/131/1/10.1063/1.3148892
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/1/10.1063/1.3148892
2009-07-01
2014-10-25

Abstract

We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K ; and 1 alkali, alkaline earth or transition metal atom plus two to five groups, i.e., , using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about were predicted to form potentially stable alloys with promising decomposition energies. The , , and alloys are found to be the most promising, followed by selected alloys.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/1/1.3148892.html;jsessionid=iomcelmq059m.x-aip-live-03?itemId=/content/aip/journal/jcp/131/1/10.1063/1.3148892&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/1/10.1063/1.3148892
10.1063/1.3148892
SEARCH_EXPAND_ITEM