1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Molecular structure determination from x-ray scattering patterns of laser-aligned symmetric-top molecules
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/13/10.1063/1.3245404
1.
1.K. Yamanouchi, Science 295, 1659 (2002).
http://dx.doi.org/10.1126/science.1068449
2.
2.C. Wunderlich, E. Kobler, H. Figger, and T. W. Hänsch, Phys. Rev. Lett. 78, 2333 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2333
3.
3.B. J. Sussman, D. Townsend, M. Yu. Ivanov, and A. Stolow, Science 314, 278 (2006).
http://dx.doi.org/10.1126/science.1132289
4.
4.E. Constant, H. Stapelfeldt, and P. B. Corkum, Phys. Rev. Lett. 76, 4140 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4140
5.
5.T. Seideman, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. Lett. 75, 2819 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2819
6.
6.A. Iwasaki, A. Hishikawa, and K. Yamanouchi, Chem. Phys. Lett. 346, 379 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00963-0
7.
7.M. Comstock, V. Senekerimyan, and M. Dantus, J. Phys. Chem. A 107, 8271 (2003).
http://dx.doi.org/10.1021/jp0278115
8.
8.J. H. Posthumus, Rep. Prog. Phys. 67, 623 (2004).
http://dx.doi.org/10.1088/0034-4885/67/5/R01
9.
9.V. G. Stavros, E. Harel, and S. R. Leone, J. Chem. Phys. 122, 064301 (2005).
http://dx.doi.org/10.1063/1.1843817
10.
10.K. J. Gaffney and H. N. Chapman, Science 316, 1444 (2007).
http://dx.doi.org/10.1126/science.1135923
11.
11.J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, Annu. Rev. Phys. Chem. 59, 387 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093642
12.
12.J. C. H. Spence and R. B. Doak, Phys. Rev. Lett. 92, 198102 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.198102
13.
13.J. C. H. Spence, K. Schmidt, J. S. Wu, G. Hembree, U. Weierstall, B. Doak, and P. Fromme, Acta Crystallogr., Sect. A: Found. Crystallogr. 61, 237 (2005).
http://dx.doi.org/10.1107/S0108767305002710
14.
14.D. Starodub, R. B. Doak, K. Schmidt, U. Weierstall, J. S. Wu, and J. C. H. Spence, J. Chem. Phys. 123, 244304 (2005).
http://dx.doi.org/10.1063/1.2137313
15.
15.E. R. Peterson, C. Buth, D. A. Arms, R. W. Dunford, E. P. Kanter, B. Krässig, E. C. Landahl, S. T. Pratt, R. Santra, S. H. Southworth, and L. Young, Appl. Phys. Lett. 92, 094106 (2008).
http://dx.doi.org/10.1063/1.2890846
16.
16.H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.543
17.
17.J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, Phys. Rev. Lett. 85, 2470 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2470
18.
18.J. G. Underwood, B. J. Sussman, and A. Stolow, Phys. Rev. Lett. 94, 143002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.143002
19.
19.K. F. Lee, D. M. Villeneuve, P. B. Corkum, A. Stolow, and J. G. Underwood, Phys. Rev. Lett. 97, 173001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.173001
20.
20.B. Friedrich and D. Herschbach, J. Chem. Phys. 111, 6157 (1999).
http://dx.doi.org/10.1063/1.479917
21.
21.R. Baumfalk, N. H. Nahler, and U. Buck, J. Chem. Phys. 114, 4755 (2001).
http://dx.doi.org/10.1063/1.1354144
22.
22.S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, and H. Sakai, J. Chem. Phys. 118, 4052 (2003).
http://dx.doi.org/10.1063/1.1540110
23.
23.L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, and G. Meijer, Phys. Rev. Lett. 102, 023001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023001
24.
24.V. Elser and R. P. Milane, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 273 (2008).
http://dx.doi.org/10.1107/S0108767307050684
25.
25.D. K. Saldin, V. L. Shneerson, D. Starodub, and J. C. H. Spence, “Reconstruction from a single diffraction pattern of azimuthally projected electron density of molecules aligned parallel to a single axis,” Acta Crystallogr. A (to be published).
26.
26.C. Buth and R. Santra, J. Chem. Phys. 129, 134312 (2008).
http://dx.doi.org/10.1063/1.2987365
27.
27.P. J. Ho and R. Santra, Phys. Rev. A 78, 053409 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.053409
28.
28.U. Even, J. Jortner, D. Noy, and N. Lavie, J. Chem. Phys. 112, 8068 (2000).
http://dx.doi.org/10.1063/1.481405
29.
29.R. Fung, V. L. Shneerson, D. K. Saldin, and A. Ourmazd, Nat. Phys. 5, 64 (2009).
http://dx.doi.org/10.1038/nphys1129
30.
30.J. R. Fienup, Appl. Opt. 21, 2758 (1982).
http://dx.doi.org/10.1364/AO.21.002758
31.
31.W. L. Bragg, Nature (London) 143, 678 (1939).
http://dx.doi.org/10.1038/143678a0
32.
32.D. Gabor, Nature (London) 161, 777 (1948).
http://dx.doi.org/10.1038/161777a0
33.
33.C. S. Fadley and P. M. Len, Nature (London) 380, 27 (1996).
http://dx.doi.org/10.1038/380027a0
34.
34.L. -M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, Y. Chushkin, and G. Grübel, Phys. Rev. Lett. 100, 245503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.245503
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/13/10.1063/1.3245404
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

X-ray diffraction patterns of molecules at 1 K subjected to a 95 ps laser pulse and a 120 ps x-ray pulse for different laser geometries. (a) , (b) , and (c) . Here, is the angle between the x-ray propagation axis and the laser polarization vector. The laser polarization vector lies on a plane defined by the x-ray propagation and polarization vectors. Panel (d) is obtained with the same laser geometry as in (c), except perfect 1D alignment is assumed.

Image of FIG. 2.

Click to view

FIG. 2.

X-ray diffraction patterns plotted in the two-dimensional subspace of reciprocal space described in the text. The data in panel (a) correspond to Fig. 1(d); (b) corresponds to Fig. 1(c). The green regions indicate the missing wedges.

Image of FIG. 3.

Click to view

FIG. 3.

The azimuthally projected structure of , holographically reconstructed from the simulated diffraction patterns of Fig. 2. (a) Perfect 1D alignment and (b) laser-induced alignment.

Loading

Article metrics loading...

/content/aip/journal/jcp/131/13/10.1063/1.3245404
2009-10-05
2014-04-25

Abstract

We investigate the molecular structure information contained in the x-ray diffraction patterns of an ensemble of rigid molecules aligned by an intense laser pulse at finite rotational temperature. The diffraction patterns are calculated at an x-ray photon energy of 20 keV to probe molecular structure at angstrom-scale resolution. We find that a structural reconstruction algorithm based on iterative phase retrieval fails to extract a reliable structure. However, the high atomic number of Br compared with C or F allows each diffraction pattern to be treated as a hologram. Using this approach, the azimuthal projection of the molecular electron density about the alignment axis may be retrieved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/13/1.3245404.html;jsessionid=bhk56kr48917r.x-aip-live-06?itemId=/content/aip/journal/jcp/131/13/10.1063/1.3245404&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Molecular structure determination from x-ray scattering patterns of laser-aligned symmetric-top molecules
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/13/10.1063/1.3245404
10.1063/1.3245404
SEARCH_EXPAND_ITEM