1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Density scaling in viscous liquids: From relaxation times to four-point susceptibilities
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/15/10.1063/1.3250938
1.
1.L. Berthier, G. Biroli, J. Bouchaud, W. Kob, K. Miyazaki, and D. R. Reichman, J. Chem. Phys. 126, 184503 (2007);
http://dx.doi.org/10.1063/1.2721554
1.L. Berthier, G. Biroli, J. Bouchaud, W. Kob, K. Miyazaki, and D. R. Reichman, J. Chem. Phys.126, 184504 (2007).
http://dx.doi.org/10.1063/1.2721555
2.
2.M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
3.
3.S. C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000).
http://dx.doi.org/10.1016/S0022-3093(00)00225-8
4.
4.F. Fujara, B. Geil, H. Sillescu, and G. Fleischer, Z. Phys. B: Condens. Matter 88, 195 (1992).
http://dx.doi.org/10.1007/BF01323572
5.
5.M. T. Cicerone, F. R. Blackburn, and M. D. Ediger, J. Chem. Phys. 102, 471 (1995).
http://dx.doi.org/10.1063/1.469425
6.
6.F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 102, 6251 (1995).
http://dx.doi.org/10.1063/1.469071
7.
7.R. Casalini, K. L. Ngai, and C. M. Roland, Phys. Rev. B 68, 014201 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.014201
8.
8.G. B. McKenna, J. Phys. IV France 10, 53 (2000).
9.
9.R. Bohmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. 99, 4201 (1993).
http://dx.doi.org/10.1063/1.466117
10.
10.G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
11.
11.M. H. Cohen and G. S. Grest, Phys. Rev. B 24, 4091 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.4091
12.
12.V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
13.
13.I. Avramov, J. Non-Cryst. Solids 351, 3163 (2005).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.08.021
14.
14.C. Donati, S. Franz, S. C. Glotzer, and G. Parisi, J. Non-Cryst. Solids 307-310, 215 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01461-8
15.
15.C. Toninelli, M. Wyart, L. Berthier, G. Biroli, and J. Bouchaud, Phys. Rev. E 71, 041505 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.041505
16.
16.L. Berthier, G. Biroli, J. Bouchaud, L. Cipelletti, D. E. Masri, D. L’Hote, F. Ladieu, and M. Pierno, Science 310, 1797 (2005).
http://dx.doi.org/10.1126/science.1120714
17.
17.C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J. Bouchaud, F. Ladieu, D. L’Hte, and G. Tarjus, Phys. Rev. E 76, 041510 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.041510
18.
18.S. Capaccioli, G. Ruocco, and F. Zamponi, J. Phys. Chem. B 112, 10652 (2008).
http://dx.doi.org/10.1021/jp802097u
19.
19.D. Fragiadakis, R. Casalini, and C. M. Roland, J. Phys. Chem. B 113, 13134 (2009).
http://dx.doi.org/10.1021/jp907553b
20.
20.R. Casalini and C. M. Roland, Phys. Rev. E 69, 062501 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.062501
21.
21.C. Alba-Simionesco, A. Cailliaux, A. Alegria, and G. Tarjus, Europhys. Lett. 68, 58 (2004).
http://dx.doi.org/10.1209/epl/i2004-10214-6
22.
22.C. Dreyfus, A. Le Grand, J. Gapinski, W. Steffen, and A. Patkowski, Eur. J. Phys. 42, 309 (2004).
23.
23.C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R03
24.
24.R. Casalini and C. M. Roland, Phys. Rev. E 72, 031503 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.031503
25.
25.U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
26.
26.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008).
http://dx.doi.org/10.1063/1.2982249
27.
27.D. Coslovich and C. M. Roland, J. Chem. Phys. 130, 014508 (2009).
http://dx.doi.org/10.1063/1.3054635
28.
28.T. B. Schrøder, U. R. Pedersen, N. P. Bailey, S. Toxvaerd, and J. C. Dyre, Phys. Rev. E 80, 041502 (2009).
29.
29.C. M. Roland, S. Bair, and R. Casalini, J. Chem. Phys. 125, 124508 (2006).
http://dx.doi.org/10.1063/1.2346679
30.
30.D. Coslovich and C. M. Roland, J. Phys. Chem. B 112, 1329 (2008).
http://dx.doi.org/10.1021/jp710457e
31.
31.R. W. Hall and P. G. Wolynes, J. Phys. Chem. B 112, 301 (2008).
http://dx.doi.org/10.1021/jp075017j
32.
32.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
http://dx.doi.org/10.1063/1.2982247
33.
33.L. Berthier and G. Tarjus, e-print arXiv:0907.2343.
34.
34.W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.4626
35.
35.S. Nosé, J. Phys. Soc. Jpn. 70, 75 (2001).
http://dx.doi.org/10.1143/JPSJ.70.75
36.
36.C. M. Roland, R. Casalini, and M. Paluch, Chem. Phys. Lett. 367, 259 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01655-X
37.
37.K. L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, and C. M. Roland, J. Phys. Chem. B 109, 17356 (2005).
http://dx.doi.org/10.1021/jp053439s
38.
38.N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, e-print arXiv:0905.3497.
39.
39.J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
40.
40.D. Chandler, J. P. Garrahan, R. L. Jack, L. Maibaum, and A. C. Pan, Phys. Rev. E 74, 051501 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.051501
41.
41.A. Le Grand, C. Dreyfus, C. Bousquet, and R. M. Pick, Phys. Rev. E 75, 061203 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.061203
42.
42.K. Z. Win and N. Menon, Phys. Rev. E 73, 040501 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.040501
43.
43.C. M. Roland, Soft Matter 4, 2316 (2008).
http://dx.doi.org/10.1039/b804794d
44.
44.R. Casalini, M. Paluch, and C. M. Roland, J. Chem. Phys. 118, 5701 (2003).
http://dx.doi.org/10.1063/1.1564046
45.
45.R. Casalini and C. M. Roland, Phys. Rev. Lett. 92, 245702 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.245702
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/15/10.1063/1.3250938
Loading
/content/aip/journal/jcp/131/15/10.1063/1.3250938
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/15/10.1063/1.3250938
2009-10-19
2014-12-19

Abstract

We present numerical calculations of a four-point dynamic susceptibility, , for the Kob–Andersen Lennard-Jones mixture as a function of temperature and density . Over a relevant range of and , the full -dependence of and thus the maximum in , which is proportional to the dynamic correlation volume, are invariant for state points for which the scaling variable is constant. The value of the material constant is the same as that which superposes the relaxation time of the system versus . Thus, the dynamic correlation volume is a unique function of for any thermodynamic condition in the regime where density scaling holds. Finally, we examine the conditions under which the density scaling properties are related to the existence of strong correlations between pressure and energy fluctuations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/15/1.3250938.html;jsessionid=9mu6966q3l8a.x-aip-live-02?itemId=/content/aip/journal/jcp/131/15/10.1063/1.3250938&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Density scaling in viscous liquids: From relaxation times to four-point susceptibilities
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/15/10.1063/1.3250938
10.1063/1.3250938
SEARCH_EXPAND_ITEM