Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/131/16/10.1063/1.3256221
1.
1.J. J. Ladik, Quantum Theory of Polymers as Solids (Plenum, New York, 1988).
2.
2.R. F. Schaufele and T. Shimanouchi, J. Chem. Phys. 47, 3605 (1967).
http://dx.doi.org/10.1063/1.1712428
3.
3.R. Eckel, M. Buback, and G. R. Strobl, Colloid Polym. Sci. 259, 326 (1981).
http://dx.doi.org/10.1007/BF01524711
4.
4.G. R. Strobl and R. Eckel, J. Polym. Sci., Polym Lett. Ed. 14, 913 (1976).
5.
5.R. G. Snyder, H. L. Strauss, R. Alamo, and L. Mandelkern, J. Chem. Phys. 100, 5422 (1994).
http://dx.doi.org/10.1063/1.467159
6.
6.I. Sakurada, T. Ito, and K. Nakamae, J. Polym. Sci., Part C: Polym. Symp. 15, 75 (1966).
7.
7.B. Fanconi and J. F. Rabolt, J. Polym. Sci., Polym. Phys. Ed. 23, 1201 (1985).
http://dx.doi.org/10.1002/pol.1985.180230612
8.
8.P. J. Barham and A. Keller, J. Polym. Sci., Polym. Lett. Ed. 17, 591 (1979).
9.
9.W. A. Herrebout, B. J. van der Veken, A. Wang, and J. R. Durig, J. Phys. Chem. 99, 578 (1995).
http://dx.doi.org/10.1021/j100002a020
10.
10.A. Zehnacker and M. A. Suhm, Angew. Chem., Int. Ed. 47, 6970 (2008).
http://dx.doi.org/10.1002/anie.200800957
11.
11.D. Ajami and J. Rebek, Jr., Nat. Chem. 1, 87 (2009).
http://dx.doi.org/10.1038/nchem.111
12.
12.J. M. Goodman, J. Chem. Inf. Comput. Sci. 37, 876 (1997).
http://dx.doi.org/10.1021/ci9704219
13.
13.S. Grimme, J. Antony, T. Schwabe, and C. Mück-Lichtenfeld, Org. Biomol. Chem. 5, 741 (2007).
http://dx.doi.org/10.1039/b615319b
14.
14.K. S. Lee and G. Wegner, Makromol. Chem., Rapid Commun. 6, 203 (1985).
http://dx.doi.org/10.1002/marc.1985.030060316
15.
15.L. S. Bartell and D. A. Kohl, J. Chem. Phys. 39, 3097 (1963).
http://dx.doi.org/10.1063/1.1734149
16.
16.S. Knippenberg, Y. R. Huang, B. Hajgató, J. -P. François, J. K. Deng, and M. S. Deleuze, J. Chem. Phys. 127, 174306 (2007).
http://dx.doi.org/10.1063/1.2772848
17.
17.H. W. Schrötter, J. Mol. Struct. 661–662, 465 (2003).
http://dx.doi.org/10.1016/j.molstruc.2003.07.023
18.
18.R. M. Balabin, J. Phys. Chem. A 113, 1012 (2009).
http://dx.doi.org/10.1021/jp809639s
19.
19.K. van Helvoort, W. Knippers, R. Fantoni, and S. Stolte, Chem. Phys. 111, 445 (1987).
http://dx.doi.org/10.1016/0301-0104(87)85092-9
20.
20.R. Fantoni, K. van Helvoort, W. Knippers, and J. Reuss, Chem. Phys. 110, 1 (1986).
http://dx.doi.org/10.1016/0301-0104(86)85140-0
21.
21.J. J. Lee, S. Höfener, W. Klopper, T. N. Wassermann, and M. A. Suhm, J. Phys. Chem. C 113, 10929 (2009).
http://dx.doi.org/10.1021/jp902194h
22.
22.Z. Xue and M. A. Suhm, J. Chem. Phys. 131, 054301 (2009).
http://dx.doi.org/10.1063/1.3191728
23.
23.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revisions B.04, C.02, and D.01, Gaussian, Inc., Pittsburgh, PA, 2003.
24.
24.M. D. Wodrich, C. Corminboeuf, and P. R. Schleyer, Org. Lett. 8, 3631 (2006).
http://dx.doi.org/10.1021/ol061016i
25.
25.S. J. Daunt and H. F. Shurvell, J. Mol. Spectrosc. 62, 373 (1976).
http://dx.doi.org/10.1016/0022-2852(76)90277-0
26.
26.D. J. Lacks and G. C. Rutledge, J. Phys. Chem. 98, 1222 (1994).
http://dx.doi.org/10.1021/j100055a030
27.
27.G. D. Barrera, S. F. Parker, A. J. Ramirez-Cuesta, and P. C. H. Mitchell, Macromolecules 39, 2683 (2006).
http://dx.doi.org/10.1021/ma052602e
28.
28.A. L. Brower, J. R. Sabin, B. Crist, and M. A. Ratner, Int. J. Quantum Chem. 18, 651 (1980).
http://dx.doi.org/10.1002/qua.560180241
29.
29.S. Suhai, J. Polym. Sci., Polym. Phys. Ed. 21, 1341 (1983).
http://dx.doi.org/10.1002/pol.1983.180210806
30.
30.J. C. L. Hageman, R. J. Meier, M. Heinemann, and R. A. de Groot, Macromolecules 30, 5953 (1997).
http://dx.doi.org/10.1021/ma9703721
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/16/10.1063/1.3256221
Loading
/content/aip/journal/jcp/131/16/10.1063/1.3256221
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/16/10.1063/1.3256221
2009-10-29
2016-02-10

Abstract

Linear alkanes with C-atoms are partially relaxed into their stretched all-transconformation by supersonic jet expansion. Their longitudinal acoustic modes are identified by spontaneous Raman scattering and deperturbed from transverse bending mode components and Fermi resonance with combination states of the same symmetry. Comparison with quantum chemical predictions of the longitudinal modes in hydrocarbon chains with up to 54 C-atoms allows for a reliable extrapolation to the limiting product for large , from which the elastic modulus of an ideal polyethylene chain in vacuum may be estimated at . Differences to solid state determinations of this quantity are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/16/1.3256221.html;jsessionid=74torbfi76mst.x-aip-live-02?itemId=/content/aip/journal/jcp/131/16/10.1063/1.3256221&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd