1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Composition and concentration anomalies for structure and dynamics of Gaussian-core mixtures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/131/16/10.1063/1.3256235
1.
1.F. H. Stillinger and D. K. Stillinger, Physica A 244, 358 (1997).
http://dx.doi.org/10.1016/S0378-4371(97)00246-X
2.
2.A. Lang, C. N. Likos, M. Watzlawek, and H. Lowen, J. Phys.: Condens. Matter 12, 5087 (2000).
http://dx.doi.org/10.1088/0953-8984/12/24/302
3.
3.A. A. Louis, P. G. Bolhuis, and J. P. Hansen, Phys. Rev. E 62, 7961 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.7961
4.
4.S. Prestipino, F. Saija, and P. V. Giaquinta, J. Chem. Phys. 123, 144110 (2005).
http://dx.doi.org/10.1063/1.2064639
5.
5.P. V. Giaquinta and F. Saija, ChemPhysChem 6, 1768 (2005).
http://dx.doi.org/10.1002/cphc.200400565
6.
6.P. Mausbach and H. O. May, Fluid Phase Equilib. 249, 17 (2006).
http://dx.doi.org/10.1016/j.fluid.2006.07.021
7.
7.C. E. Zachary, F. H. Stillinger, and S. Torquato, J. Chem. Phys. 128, 224505 (2008).
http://dx.doi.org/10.1063/1.2928843
8.
8.H. Wensink, H. Löwen, M. Rex, C. Likos, and S. van Teeffelen, Comput. Phys. Commun. 179, 77 (2008).
http://dx.doi.org/10.1016/j.cpc.2008.01.009
9.
9.W. P. Krekelberg, T. Kumar, J. Mittal, J. R. Errington, and T. M. Truskett, Phys. Rev. E 79, 031203 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.031203
10.
10.F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).
http://dx.doi.org/10.1063/1.432891
11.
11.C. N. Likos, Phys. Rep. 348, 267 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
12.
12.F. H. Stillinger and T. A. Weber, J. Chem. Phys. 68, 3837 (1978).
http://dx.doi.org/10.1063/1.436191
13.
13.Y. Rosenfeld, Phys. Rev. A 15, 2545 (1977).
http://dx.doi.org/10.1103/PhysRevA.15.2545
14.
14.Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999).
http://dx.doi.org/10.1088/0953-8984/11/28/303
15.
15.M. Dzugutov, Nature (London) 381, 137 (1996).
http://dx.doi.org/10.1038/381137a0
16.
16.J. Mittal, J. R. Errington, and T. M. Truskett, J. Phys. Chem. B 111, 10054 (2007).
http://dx.doi.org/10.1021/jp071369e
17.
17.J. R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001).
http://dx.doi.org/10.1038/35053024
18.
18.M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, Phys. Rev. E 66, 011202 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.011202
19.
19.Z. Yan, S. V. Buldyrev, N. Giovambattista, and H. E. Stanley, Phys. Rev. Lett. 95, 130604 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.130604
20.
20.J. Mittal, J. R. Errington, and T. M. Truskett, J. Chem. Phys. 125, 076102 (2006).
http://dx.doi.org/10.1063/1.2336197
21.
21.J. R. Errington, T. M. Truskett, and J. Mittal, J. Chem. Phys. 125, 244502 (2006).
http://dx.doi.org/10.1063/1.2409932
22.
22.R. Sharma, S. N. Chakraborty, and C. Chakravarty, J. Chem. Phys. 125, 204501 (2006).
http://dx.doi.org/10.1063/1.2390710
23.
23.A. B. de Oliveira, G. Franzese, P. A. Netz, and M. C. Barbosa, J. Chem. Phys. 128, 064901 (2008).
http://dx.doi.org/10.1063/1.2830706
24.
24.Z. Yan, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 78, 051201 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.051201
25.
25.W. P. Krekelberg, J. Mittal, V. Ganesan, and T. M. Truskett, Phys. Rev. E 77, 041201 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041201
26.
26.A. Chaimovich and M. S. Shell, Phys. Chem. Chem. Phys. 11, 1901 (2009).
http://dx.doi.org/10.1039/b818512c
27.
27.J. Mittal, J. R. Errington, and T. M. Truskett, J. Phys. Chem. B 110, 18147 (2006).
http://dx.doi.org/10.1021/jp064816j
28.
28.W. P. Krekelberg, J. Mittal, V. Ganesan, and T. M. Truskett, J. Chem. Phys. 127, 044502 (2007).
http://dx.doi.org/10.1063/1.2753154
29.
29.A. J. Archer and R. Evans, Phys. Rev. E 64, 041501 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.041501
30.
30.M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1987).
31.
31.We use Student’s distribution together with the tracer diffusivities from five independent runs to estimate 95% confidence intervals for the .
32.
32.J. Hernando, Mol. Phys. 69, 319 (1990).
http://dx.doi.org/10.1080/00268979000100211
33.
33.A. Samanta, S. M. Ali, and S. K. Ghosh, Phys. Rev. Lett. 87, 245901 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.245901
34.
34.T. M. Truskett, S. Torquato, and P. G. Debenedetti, Phys. Rev. E 62, 993 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.993
35.
35.In the limit of pure B , one observes (Ref. 9) both and for reduced densities greater than . However, we have found in our studies of this system that, for nonzero values of , the binary GC fluid will often phase separate at densities below where the onset of anomalous dynamic and structural behavior occurs.
36.
36.See EPAPS supplementary material at http://www.aip.org/pubservs/epaps.html http://dx.doi.org/10.1063/1.3256235 for tracer diffusivity and structural order metric date versus concentration for the binary Gaussian-core fluid mixture discussed in the text at different mole fractions and temperatures.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/16/10.1063/1.3256235
Loading
/content/aip/journal/jcp/131/16/10.1063/1.3256235
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/131/16/10.1063/1.3256235
2009-10-22
2014-10-26

Abstract

We report molecular dynamics simulation results for two-component fluid mixtures of Gaussian-core particles, focusing on how tracer diffusivities and static pair correlations depend on temperature, particle concentration, and composition. At low particle concentrations, these systems behave like simple atomic mixtures. However, for intermediate concentrations, the single-particle dynamics of the two species largely decouple, giving rise to the following anomalous trends. Increasing either the concentration of the fluid (at fixed composition) or the mole fraction of the larger particles (at fixed particle concentration) enhances the tracer diffusivity of the larger particles but decreases that of the smaller particles. In fact, at sufficiently high particle concentrations, the larger particles exhibit higher mobility than the smaller particles. Each of these dynamic behaviors is accompanied by a corresponding structural trend that characterizes how either concentration or composition affects the strength of the static pair correlations. Specifically, the dynamic trends observed here are consistent with a single empirical scaling law that relates an appropriately normalized tracer diffusivity to its pair-correlation contribution to the excess entropy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/131/16/1.3256235.html;jsessionid=akd25d5efte7m.x-aip-live-02?itemId=/content/aip/journal/jcp/131/16/10.1063/1.3256235&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Composition and concentration anomalies for structure and dynamics of Gaussian-core mixtures
http://aip.metastore.ingenta.com/content/aip/journal/jcp/131/16/10.1063/1.3256235
10.1063/1.3256235
SEARCH_EXPAND_ITEM